Optimizing Computer-Aided Diagnosis with Cost-Aware Deep Learning Models

被引:0
作者
Patel, Charmi [1 ]
Wang, Yiyang [2 ]
Ramaraj, Thiruvarangan [1 ]
Tchoua, Roselyne [1 ]
Furst, Jacob [1 ]
Raicu, Daniela [1 ]
机构
[1] Depaul Univ, Chicago, IL 60604 USA
[2] Milwaukee Sch Engn, Milwaukee, WI 53202 USA
来源
BIOCOMPUTING 2024, PSB 2024 | 2024年
关键词
Misclassification errors; Cost-sensitive activation function; Convolutional neural network; CLASSIFICATION; SPECIFICITY; SENSITIVITY; ENSEMBLE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classical machine learning and deep learning models for Computer-Aided Diagnosis (CAD) commonly focus on overall classification performance, treating misclassification errors (false negatives and false positives) equally during training. This uniform treatment overlooks the distinct costs associated with each type of error, leading to suboptimal decision-making, particularly in the medical domain where it is important to improve the prediction sensitivity without significantly compromising overall accuracy. This study introduces a novel deep learning-based CAD system that incorporates a cost-sensitive parameter into the activation function. By applying our methodologies to two medical imaging datasets, our proposed study shows statistically significant increases of 3.84% and 5.4% in sensitivity while maintaining overall accuracy for Lung Image Database Consortium (LIDC) and Breast Cancer Histological Database (BreakHis), respectively. Our findings underscore the significance of integrating cost-sensitive parameters into future CAD systems to optimize performance and ultimately reduce costs and improve patient outcomes.
引用
收藏
页码:108 / 119
页数:12
相关论文
共 35 条
  • [1] Can-CSC-GBE: Developing Cost-sensitive Classifier with Gentleboost Ensemble for breast cancer classification using protein amino acids and imbalanced data
    Ali, Safdar
    Majid, Abdul
    Javed, Syed Gibran
    Sattar, Mohsin
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2016, 73 : 38 - 46
  • [2] Ensemble Feature Ranking for Cost-Based Non-Overlapping Groups: A Case Study of Chronic Kidney Disease Diagnosis in Developing Countries
    Ali, Syed Imran
    Bilal, Hafiz Syed Muhammad
    Hussain, Musarrat
    Hussain, Jamil
    Satti, Fahad Ahmed
    Hussain, Maqbool
    Park, Gwang Hoon
    Chung, Taechoong
    Lee, Sungyoung
    [J]. IEEE ACCESS, 2020, 8 (08): : 215623 - 215648
  • [3] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [4] Sequestration of Imaging Studies in MIDRC: a Multi-Institutional Data Commons
    Baughan, Natalie
    Whitney, Heather
    Drukker, Karen
    Sahiner, Berkman
    Hu, Tingting
    Hyun, Kim J. Grace
    McNitt-Gray, Michael
    Myers, Kyle
    Giger, Maryellen L.
    [J]. MEDICAL IMAGING 2022: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2022, 12035
  • [5] The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
    Clark, Kenneth
    Vendt, Bruce
    Smith, Kirk
    Freymann, John
    Kirby, Justin
    Koppel, Paul
    Moore, Stephen
    Phillips, Stanley
    Maffitt, David
    Pringle, Michael
    Tarbox, Lawrence
    Prior, Fred
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) : 1045 - 1057
  • [6] A Cost-sensitive weighted Random Forest Technique for Credit Card Fraud Detection
    Devi, Debashree
    Biswas, Saroj. K.
    Purkayastha, Biswajit
    [J]. 2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [7] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [8] Khoshgoftaar T. M., 2002, 7 IEEE INT S HIGH AS
  • [9] A Hybrid Approach Using Oversampling Technique and Cost-Sensitive Learning for Bankruptcy Prediction
    Le, Tuong
    Minh Thanh Vo
    Bay Vo
    Lee, Mi Young
    Baik, Sung Wook
    [J]. COMPLEXITY, 2019, 2019
  • [10] Rectified Softmax Loss With All-Sided Cost Sensitivity for Age Estimation
    Li, Daxiang
    Ma, Xuan
    Ren, Yaqiong
    Teng, Shyh-Wei
    [J]. IEEE ACCESS, 2020, 8 : 32551 - 32563