Development of porous hydroxyapatite/PVA/gelatin/alginate hybrid flexible scaffolds with improved mechanical properties for bone tissue engineering

被引:11
|
作者
El-Bahrawy, Nadia R. [1 ]
Elgharbawy, Hani [1 ]
Elmekawy, Ahmed [1 ]
Salem, Mohamed [2 ]
Morsy, Reda [1 ]
机构
[1] Tanta Univ, Fac Sci, Phys Dept, Biophys Lab, Tanta 31527, Egypt
[2] Tanta Univ, Fac Sci, Zool Dept, Immunol & Biotechnol Unit, Tanta 31527, Egypt
关键词
Porous hybrid scaffolds; Hydroxyapatite-gelatin; PVA-Alginate; Freeze-drying; Bone tissue engineering; COMPOSITE SCAFFOLDS; CROSS-LINKING; FABRICATION; HYDROXYAPATITE; NANOFIBERS; MEMBRANES;
D O I
10.1016/j.matchemphys.2024.129332
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Porous scaffolds based on gelatin and hydroxyapatite particles (HAp) are promising for applications in bone tissue engineering and regenerative medicine. However, they are not ideal for stress and shock protection due to low compressive strength, brittleness, and poor toughness. Herein, we developed porous hybrid scaffolds by combining multiple components into a single bone scaffold, including hydroxyapatite nanoparticles (HAp NPs), alginate, polyvinyl alcohol (PVA), and gelatin with different gelatin/PVA composition ratios. HAp NPs were synthesized in situ in PVA solution and scaffolds were fabricated using a freeze-drying method. The results showed good physicochemical properties of the scaffolds: formation of pure HAp NPs phase, high porosity, large pore sizes, large swelling capacity depending on varying gelatin/PVA ratios, as well as a long -term degradation rate up to 28 days. The porous scaffolds exhibited compressive strength close to the cancellous bone with stressstrain behavior exhibiting three-stage flexible behavior indicating improved fracture resistance with an energy absorbing capability up to 1.9 MJ/m 3 . The scaffolds have a yield strength of 70 - 403 kPa, a compressive strength at 65 % strain of 0.96 - 1.80 MPa, a nonporous elastic modulus of 10.44 - 12.40 GPa, and a densification strain of approximately 0.92 %. This work develops three-dimensional (3D) porous hybrid bone scaffolds with mechanical strength within the minimum compressive strength of cancellous bone and mechanical energy absorption capacity favor for cancellous bone repair, bone tissue engineering, and regenerative medicine applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Mechanical and permeability properties of porous scaffolds developed by a Voronoi tessellation for bone tissue engineering
    Zhao, Ze
    Li, Junchao
    Yao, Dingrou
    Wei, Yuan
    JOURNAL OF MATERIALS CHEMISTRY B, 2022, 10 (46) : 9699 - 9712
  • [32] Bioactive alginate/carrageenan/calcium silicate porous scaffolds for bone tissue engineering
    Sathain, Ammara
    Monvisade, Pathavuth
    Siriphannon, Punnama
    MATERIALS TODAY COMMUNICATIONS, 2021, 26
  • [33] Preparation, Characterization, and Implantation of Porous Fibroin/Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Xu, Shui
    Xia, Ju
    Wu, Tingfang
    Gao, Baodong
    Zhang, Yan
    Wang, Xin
    Cheng, Guotao
    Zhu, Yong
    SCIENCE OF ADVANCED MATERIALS, 2018, 10 (11) : 1601 - 1607
  • [34] Hydrothermal fabrication of hydroxyapatite/chitosan/carbon porous scaffolds for bone tissue engineering
    Long, Teng
    Liu, Yu-Tai
    Tang, Sha
    Sun, Jin-Liang
    Guo, Ya-Ping
    Zhu, Zhen-An
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2014, 102 (08) : 1740 - 1748
  • [35] Facile synthesis of anisotropic porous chitosan/hydroxyapatite scaffolds for bone tissue engineering
    Cai, Xuan
    Chen, Li
    Jiang, Tao
    Shen, Xinyu
    Hu, Jiming
    Tong, Hua
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (32) : 12015 - 12025
  • [36] Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering
    Paola Fabbri
    Federica Bondioli
    Massimo Messori
    Cristina Bartoli
    Dinuccio Dinucci
    Federica Chiellini
    Journal of Materials Science: Materials in Medicine, 2010, 21 : 343 - 351
  • [37] Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering
    Fabbri, Paola
    Bondioli, Federica
    Messori, Massimo
    Bartoli, Cristina
    Dinucci, Dinuccio
    Chiellini, Federica
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2010, 21 (01) : 343 - 351
  • [38] Protein-inorganic hybrid porous scaffolds for bone tissue engineering
    Lu, Minqi
    Sun, Liangyan
    Yao, Jinrong
    Zhao, Bingjiao
    Liu, Yuehua
    Shao, Zhengzhong
    Chen, Xin
    JOURNAL OF MATERIALS CHEMISTRY B, 2022, 10 (34) : 6546 - 6556
  • [39] Preparation and properties of silk fibroin/gelatin porous scaffolds for liver tissue engineering
    Hao, Xing
    He, Jiankang
    Gao, Kun
    Li, Dichen
    Liu, Yaxiong
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2011, 45 (11): : 121 - 126
  • [40] Biomimetic gelatin/chitosan/polyvinyl alcohol/nano-hydroxyapatite scaffolds for bone tissue engineering
    Ma, Pengfei
    Wu, Wenjing
    Wei, Yu
    Ren, Le
    Lin, Shuxian
    Wu, Junhua
    MATERIALS & DESIGN, 2021, 207