Development of porous hydroxyapatite/PVA/gelatin/alginate hybrid flexible scaffolds with improved mechanical properties for bone tissue engineering

被引:11
|
作者
El-Bahrawy, Nadia R. [1 ]
Elgharbawy, Hani [1 ]
Elmekawy, Ahmed [1 ]
Salem, Mohamed [2 ]
Morsy, Reda [1 ]
机构
[1] Tanta Univ, Fac Sci, Phys Dept, Biophys Lab, Tanta 31527, Egypt
[2] Tanta Univ, Fac Sci, Zool Dept, Immunol & Biotechnol Unit, Tanta 31527, Egypt
关键词
Porous hybrid scaffolds; Hydroxyapatite-gelatin; PVA-Alginate; Freeze-drying; Bone tissue engineering; COMPOSITE SCAFFOLDS; CROSS-LINKING; FABRICATION; HYDROXYAPATITE; NANOFIBERS; MEMBRANES;
D O I
10.1016/j.matchemphys.2024.129332
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Porous scaffolds based on gelatin and hydroxyapatite particles (HAp) are promising for applications in bone tissue engineering and regenerative medicine. However, they are not ideal for stress and shock protection due to low compressive strength, brittleness, and poor toughness. Herein, we developed porous hybrid scaffolds by combining multiple components into a single bone scaffold, including hydroxyapatite nanoparticles (HAp NPs), alginate, polyvinyl alcohol (PVA), and gelatin with different gelatin/PVA composition ratios. HAp NPs were synthesized in situ in PVA solution and scaffolds were fabricated using a freeze-drying method. The results showed good physicochemical properties of the scaffolds: formation of pure HAp NPs phase, high porosity, large pore sizes, large swelling capacity depending on varying gelatin/PVA ratios, as well as a long -term degradation rate up to 28 days. The porous scaffolds exhibited compressive strength close to the cancellous bone with stressstrain behavior exhibiting three-stage flexible behavior indicating improved fracture resistance with an energy absorbing capability up to 1.9 MJ/m 3 . The scaffolds have a yield strength of 70 - 403 kPa, a compressive strength at 65 % strain of 0.96 - 1.80 MPa, a nonporous elastic modulus of 10.44 - 12.40 GPa, and a densification strain of approximately 0.92 %. This work develops three-dimensional (3D) porous hybrid bone scaffolds with mechanical strength within the minimum compressive strength of cancellous bone and mechanical energy absorption capacity favor for cancellous bone repair, bone tissue engineering, and regenerative medicine applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Preparation, structural and mechanical characterization of porous hydroxyapatite-gelatin composite scaffolds for bone tissue engineering
    Narbat, Mehdi Kazemzadeh
    PROCEEDINGS OF THE FIFTH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, 2007, : 452 - 457
  • [2] Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering
    Padmanabhan, Sanosh Kunjalukkal
    Gervaso, Francesca
    Carrozzo, Marina
    Scalera, Francesca
    Sannino, Alessandro
    Licciulli, Antonio
    CERAMICS INTERNATIONAL, 2013, 39 (01) : 619 - 627
  • [3] Directional extrusion preparation and properties of ordered porous gelatin/ nano-hydroxyapatite bone tissue engineering scaffolds
    Qing, Jie
    Tan, Jia-Wei
    Xiao, Ting
    He, Jia
    Yu, Jie
    Fu, Ze-Li
    Yan, Tingting
    MATERIALS LETTERS, 2025, 389
  • [4] Preparation of porous hydroxyapatite scaffolds for bone tissue engineering
    Min, Sang-Ho
    Jin, Hyeong-Ho
    Park, Hoy-Yul
    Park, Ik-Min
    Park, Hong-Chae
    Yoon, Seog-Young
    ECO-MATERIALS PROCESSING & DESIGN VII, 2006, 510-511 : 754 - 757
  • [5] Nano Silver Substituted Hydroxyapatite, Gelatin, Alginate and SPION Composite Fibrous Scaffolds for Bone Tissue Engineering
    Das, B.
    Dadheech, P.
    Srivas, P.
    Pal, P.
    Dhara, S.
    TISSUE ENGINEERING PART A, 2014, 20 : S79 - S79
  • [6] Preparation and investigation of porous hydroxyapatite-gelatin composite scaffolds designed for bone tissue engineering
    Narbar, M. Kazemzadeh
    Ilashtjin, M. Solati
    Pazouki, M.
    CYTOTHERAPY, 2006, 8 : 63 - 63
  • [7] Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: Preparation, characterization, and in vitro studies
    Lin, HR
    Yeh, YJ
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2004, 71B (01): : 52 - 65
  • [8] In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering
    Jin, Hyeong-Ho
    Kim, Dong-Hyun
    Kim, Tae-Wan
    Shin, Keun-Koo
    Jung, Jin Sup
    Park, Hong-Chae
    Yoon, Seog-Young
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 51 (05) : 1079 - 1085
  • [9] Fabrication of Variable Porous Hydroxyapatite Scaffolds to Investigate Appropriate Mechanical and Morphological Properties for Bone Tissue Engineering
    Hoseini, Jamal
    Kaka, Gholamreza
    Sadraie, Seyed Homayoon
    Roshanbinfar, Kaveh
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2014, 4 (02) : 138 - 142
  • [10] Designing Porous Bone Tissue Engineering Scaffolds with Enhanced Mechanical Properties from Composite Hydrogels Composed of Modified Alginate, Gelatin, and Bioactive Glass
    Sarker, Bapi
    Li, Wei
    Zheng, Kai
    Detsch, Rainer
    Boccaccini, Aldo R.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2016, 2 (12): : 2240 - 2254