Power Consumption and Processing Time Estimation of CNC Machines Using Explainable Artificial Intelligence (XAI)

被引:3
|
作者
Thapaliya, Suman [1 ]
Valiai, Omid Fatahi [1 ]
Wicaksono, Hendro [1 ]
机构
[1] Constructor Univ, Sch Business & Social Decis Sci, Campus Ring 1, D-28759 Bremen, Germany
来源
5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023 | 2024年 / 232卷
关键词
machine learning; explainable artificial intelligence (XAI); power consumption prediction; manufacturing; CNC machines; ENERGY-CONSUMPTION; PREDICTION;
D O I
10.1016/j.procs.2024.01.086
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Due to environmental issues such as climate change, companies are required to optimize their resource and energy consumption in their production process. Predicting power consumption and processing time of all production facilities is essential for manufacturing to develop mechanisms to prevent energy and resource waste and optimize their use. Machine learning is a powerful tool for prediction tasks using data in digitalized environments. In this paper, we present power consumption and processing time prediction of CNC milling machines using five machine learning regression models, i.e., decision tree, random forest, support vector regression (SVR), extreme gradient boosting (XGBoost), and artificial neural network (ANN). Since most of those models are black-box, we applied two explainable artificial intelligence (XAI) approaches, SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME), to give post-hoc explanations of the predictions given by the machine learning models. Our experiments indicated that random forest regression performed the best in predicting power consumption and processing time. The explanation showed that the number of axis rotations and the number of travels to the machine's zero point in rapid traverse were the most important factors that affected the processing time and power consumption. The companies using CNC milling machines can use our prediction models to optimally plan and schedule the operation of the milling machines in a time and energy-efficient manner. They can also optimize the factors that affect power consumption and processing time the most. (C) 2024 The Authors. Published by Elsevier B.V.
引用
收藏
页码:861 / 870
页数:10
相关论文
共 50 条
  • [21] Measuring Explainability and Trustworthiness of Power Quality Disturbances Classifiers Using XAI-Explainable Artificial Intelligence
    Machlev, Ram
    Perl, Michael
    Belikov, Juri
    Levy, Kfir Yehuda
    Levron, Yoash
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (08) : 5127 - 5137
  • [22] Explainable Artificial Intelligence for Cyber Threat Intelligence (XAI-CTI)
    Samtani, Sagar
    Chen, Hsinchun
    Kantarcioglu, Murat
    Thuraisingham, Bhavani
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (04) : 2149 - 2150
  • [23] Improving deep learning performance by using Explainable Artificial Intelligence (XAI) approaches
    Bento V.
    Kohler M.
    Diaz P.
    Mendoza L.
    Pacheco M.A.
    Discover Artificial Intelligence, 2021, 1 (01):
  • [24] Explainable Artificial Intelligence (XAI) techniques for energy and power systems: Review, challenges and opportunities
    Machlev, R.
    Heistrene, L.
    Perl, M.
    Levy, K. Y.
    Belikov, J.
    Mannor, S.
    Levron, Y.
    ENERGY AND AI, 2022, 9
  • [25] Spatial flood susceptibility mapping using an explainable artificial intelligence (XAI) model
    Pradhan, Biswajeet
    Lee, Saro
    Dikshit, Abhirup
    Kim, Hyesu
    GEOSCIENCE FRONTIERS, 2023, 14 (06)
  • [26] Social Media Hate Speech Detection Using Explainable Artificial Intelligence (XAI)
    Mehta, Harshkumar
    Passi, Kalpdrum
    ALGORITHMS, 2022, 15 (08)
  • [27] Opportunities in Real Time Fraud Detection: An Explainable Artificial Intelligence (XAI) Research Agenda
    Mill, Eleanor
    Garn, Wolfgang
    Ryman-Tubb, Nick
    Turner, Chris
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (05) : 1172 - 1186
  • [28] Explainable Artificial Intelligence (XAI) Approach for Reinforcement Learning Systems
    Peixoto, Maria J. P.
    Azim, Akramul
    39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 971 - 978
  • [29] A New Perspective on hvaluation Methods for Explainable Artificial Intelligence (XAI)
    Speith, Timo
    Langer, Markus
    2023 IEEE 31ST INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE WORKSHOPS, REW, 2023, : 325 - 331
  • [30] Explainable Artificial Intelligence (XAI) Model for Cancer Image Classification
    Singhal, Amit
    Agrawal, Krishna Kant
    Quezada, Angeles
    Aguinaga, Adrian Rodriguez
    Jimenez, Samantha
    Yadav, Satya Prakash
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 141 (01): : 401 - 441