Content-Driven Magnitude-Derivative Spectrum Complementary Learning for Hyperspectral Image Classification

被引:5
作者
Bai, Huiyan [1 ,2 ]
Xu, Tingfa [1 ,2 ,3 ]
Chen, Huan [1 ,2 ]
Liu, Peifu [1 ,2 ]
Li, Jianan [1 ,2 ]
机构
[1] Minist Educ China, Key Lab Photoelect Imaging Technol & Syst, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing 100081, Peoples R China
[3] Beijing Inst Technol Chongqing Innovat Ctr, Big Data & Artificial Intelligence Lab, Chongqing, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Complementary information; hyperspectral image (HSI) classification; spectral derivative; REMOTE-SENSING IMAGES;
D O I
10.1109/TGRS.2024.3435079
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Extracting discriminative information from complex spectral details in hyperspectral image (HSI) for HSI classification is pivotal. While current prevailing methods rely on spectral magnitude features, they could cause confusion in certain classes, resulting in misclassification and decreased accuracy. We find that the derivative spectrum proves more adept at capturing concealed information, thereby offering a distinct advantage in separating these confusion classes. Leveraging the complementarity between spectral magnitude and derivative features, we propose a content-driven spectrum complementary network (CSCN) based on magnitude-derivative dual encoder, employing these two features as combined inputs. To fully utilize their complementary information, we raise a content-adaptive pointwise fusion module (CPFM), enabling adaptive fusion of dual-encoder features in a pointwise selective manner, contingent upon feature representation. To preserve a rich source of complementary information while extracting more distinguishable features, we introduce a hybrid disparity-enhancing loss that enhances the differential expression of the features from the two branches and increases the interclass distance. As a result, our method achieves state-of-the-art results on the extensive WHU-OHS dataset and eight other benchmark datasets.
引用
收藏
页数:14
相关论文
共 49 条
[21]   Limitations of Principal Components Analysis for Hyperspectral Target Recognition [J].
Prasad, Saurabh ;
Bruce, Lori Mann .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (04) :625-629
[22]   DMSSN: Distilled Mixed Spectral–Spatial Network for Hyperspectral Salient Object Detection [J].
Qin, Haolin ;
Xu, Tingfa ;
Liu, Peifu ;
Xu, Jingxuan ;
Li, Jianan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 :1-18
[23]   Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification [J].
Roy, Swalpa Kumar ;
Deria, Ankur ;
Shah, Chiranjibi ;
Haut, Juan M. ;
Du, Qian ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[24]   Attention-Based Adaptive SpectralSpatial Kernel ResNet for Hyperspectral Image Classification [J].
Roy, Swalpa Kumar ;
Manna, Suvojit ;
Song, Tiecheng ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09) :7831-7843
[25]   Efficient Deep Learning of Nonlocal Features for Hyperspectral Image Classification [J].
Shen, Yu ;
Zhu, Sijie ;
Chen, Chen ;
Du, Qian ;
Xiao, Liang ;
Chen, Jianyu ;
Pan, Delu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07) :6029-6043
[26]   SpectralSpatial Feature Tokenization Transformer for Hyperspectral Image Classification [J].
Sun, Le ;
Zhao, Guangrui ;
Zheng, Yuhui ;
Wu, Zebin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[27]  
Tsai F, 1997, INT GEOSCI REMOTE SE, P1243, DOI 10.1109/IGARSS.1997.606410
[28]   A multi-task learning method for extraction of newly constructed areas based on bi-temporal hyperspectral images [J].
Tu, Lilin ;
Huang, Xin ;
Li, Jiayi ;
Yang, Jie ;
Gong, Jianya .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 208 :308-323
[29]  
van den Oord A, 2019, Arxiv, DOI arXiv:1807.03748
[30]   Multispectral and hyperspectral image fusion in remote sensing: A survey [J].
Vivone, Gemine .
INFORMATION FUSION, 2023, 89 :405-417