Content-Driven Magnitude-Derivative Spectrum Complementary Learning for Hyperspectral Image Classification

被引:5
作者
Bai, Huiyan [1 ,2 ]
Xu, Tingfa [1 ,2 ,3 ]
Chen, Huan [1 ,2 ]
Liu, Peifu [1 ,2 ]
Li, Jianan [1 ,2 ]
机构
[1] Minist Educ China, Key Lab Photoelect Imaging Technol & Syst, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing 100081, Peoples R China
[3] Beijing Inst Technol Chongqing Innovat Ctr, Big Data & Artificial Intelligence Lab, Chongqing, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Complementary information; hyperspectral image (HSI) classification; spectral derivative; REMOTE-SENSING IMAGES;
D O I
10.1109/TGRS.2024.3435079
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Extracting discriminative information from complex spectral details in hyperspectral image (HSI) for HSI classification is pivotal. While current prevailing methods rely on spectral magnitude features, they could cause confusion in certain classes, resulting in misclassification and decreased accuracy. We find that the derivative spectrum proves more adept at capturing concealed information, thereby offering a distinct advantage in separating these confusion classes. Leveraging the complementarity between spectral magnitude and derivative features, we propose a content-driven spectrum complementary network (CSCN) based on magnitude-derivative dual encoder, employing these two features as combined inputs. To fully utilize their complementary information, we raise a content-adaptive pointwise fusion module (CPFM), enabling adaptive fusion of dual-encoder features in a pointwise selective manner, contingent upon feature representation. To preserve a rich source of complementary information while extracting more distinguishable features, we introduce a hybrid disparity-enhancing loss that enhances the differential expression of the features from the two branches and increases the interclass distance. As a result, our method achieves state-of-the-art results on the extensive WHU-OHS dataset and eight other benchmark datasets.
引用
收藏
页数:14
相关论文
共 49 条
[1]   Spectral Derivative Features for Classification of Hyperspectral Remote Sensing Images: Experimental Evaluation [J].
Bao, Jiangfeng ;
Chi, Mingmin ;
Benediktsson, Jon Atli .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) :594-601
[2]   Spectral-Wise Implicit Neural Representation for Hyperspectral Image Reconstruction [J].
Chen, Huan ;
Zhao, Wangcai ;
Xu, Tingfa ;
Shi, Guokai ;
Zhou, Shiyun ;
Liu, Peifu ;
Li, Jianan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) :3714-3727
[3]   Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks [J].
Chen, Yushi ;
Jiang, Hanlu ;
Li, Chunyang ;
Jia, Xiuping ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6232-6251
[4]   Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network [J].
Chen, Yushi ;
Zhao, Xing ;
Jia, Xiuping .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2381-2392
[5]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[6]   Classification of Hyperspectral Images by Exploiting Spectral-Spatial Information of Superpixel via Multiple Kernels [J].
Fang, Leyuan ;
Li, Shutao ;
Duan, Wuhui ;
Ren, Jinchang ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (12) :6663-6674
[7]   Investigation of the random forest framework for classification of hyperspectral data [J].
Ham, J ;
Chen, YC ;
Crawford, MM ;
Ghosh, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :492-501
[8]   Hyperspectral Image Classification With Attention-Aided CNNs [J].
Hang, Renlong ;
Li, Zhu ;
Liu, Qingshan ;
Ghamisi, Pedram ;
Bhattacharyya, Shuvra S. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (03) :2281-2293
[9]   SpectralGPT: Spectral Remote Sensing Foundation Model [J].
Hong, Danfeng ;
Zhang, Bing ;
Li, Xuyang ;
Li, Yuxuan ;
Li, Chenyu ;
Yao, Jing ;
Yokoya, Naoto ;
Li, Hao ;
Ghamisi, Pedram ;
Jia, Xiuping ;
Plaza, Antonio ;
Gamba, Paolo ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (08) :5227-5244
[10]   Cross-city matters: A multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks [J].
Hong, Danfeng ;
Zhang, Bing ;
Li, Hao ;
Li, Yuxuan ;
Yao, Jing ;
Li, Chenyu ;
Werner, Martin ;
Chanussot, Jocelyn ;
Zipf, Alexander ;
Zhu, Xiao Xiang .
REMOTE SENSING OF ENVIRONMENT, 2023, 299