Development of quantum machine learning to evaluate the corrosion inhibition capability of pyrimidine compounds

被引:12
作者
Akrom, Muhamad [1 ,2 ]
Rustad, Supriadi [2 ]
Dipojono, Hermawan Kresno [3 ]
机构
[1] Univ Dian Nuswantoro, Fac Comp Sci, Study Program Informat Engn, Semarang 50131, Indonesia
[2] Univ Dian Nuswantoro, Fac Comp Sci, Res Ctr Mat Informat, Semarang 50131, Indonesia
[3] Inst Teknol Bandung, Fac Ind Technol, Quantum & Nano Technol Res Grp, Bandung 40132, Indonesia
来源
MATERIALS TODAY COMMUNICATIONS | 2024年 / 39卷
关键词
Quantum neural network; QSPR; Corrosion inhibition; Pyrimidine; MILD-STEEL; DERIVATIVES; ACID; ALGORITHMS;
D O I
10.1016/j.mtcomm.2024.108758
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This investigation employs a quantum neural network (QNN) synergistically integrated with a quantitative structure-property relationship (QSPR) model for the comprehensive evaluation of corrosion inhibition efficiency (CIE) in pyrimidine compounds. The QNN, exhibiting superior performance over conventional methodologies, attains commendable predictive precision, as evidenced by metrics: R 2 = 0.981, RMSE = 0.53, MAE = 0.43, and MAD = 0.42. The prognosticated CIE values for the synthesized derivatives (P1, P2, P3) are 91.17, 98.69, and 99.21, respectively. This pioneering approach holds promise for a transformative impact on both the manufacturing and evaluation procedures associated with novel anti-corrosion materials.
引用
收藏
页数:12
相关论文
共 82 条
[1]   The power of quantum neural networks [J].
Abbas, Amira ;
Sutter, David ;
Zoufal, Christa ;
Lucchi, Aurelien ;
Figalli, Alessio ;
Woerner, Stefan .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (06) :403-409
[2]   Explainable Heart Disease Prediction Using Ensemble-Quantum Machine Learning Approach [J].
Abdulsalam, Ghada ;
Meshoul, Souham ;
Shaiba, Hadil .
INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (01) :761-779
[3]   Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance [J].
Ahsan, Md Manjurul ;
Mahmud, M. A. Parvez ;
Saha, Pritom Kumar ;
Gupta, Kishor Datta ;
Siddique, Zahed .
TECHNOLOGIES, 2021, 9 (03)
[4]  
Aishwarya S., 2020, J. Quant. Comput, V2, P157, DOI DOI 10.32604/JQC.2020.015018
[5]  
Akrom Muhamad, 2023, Journal of Physics: Conference Series, DOI 10.1088/1742-6596/2673/1/012014
[6]   A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors [J].
Akrom, Muhamad ;
Rustad, Supriadi ;
Dipojono, Hermawan Kresno .
PHYSICA SCRIPTA, 2024, 99 (03)
[7]   Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors [J].
Akrom, Muhamad ;
Rustad, Supriadi ;
Dipojono, Hermawan Kresno .
RESULTS IN CHEMISTRY, 2023, 6
[8]   Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors [J].
Akrom, Muhamad ;
Rustad, Supriadi ;
Saputro, Adhitya Gandaryus ;
Dipojono, Hermawan Kresno .
COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2023, 1229
[9]   A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds [J].
Akrom, Muhamad ;
Rustad, Supriadi ;
Saputro, Adhitya Gandaryus ;
Ramelan, Aditianto ;
Fathurrahman, Fadjar ;
Dipojono, Hermawan Kresno .
MATERIALS TODAY COMMUNICATIONS, 2023, 35
[10]   DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract [J].
Akrom, Muhamad ;
Saputro, Adhitya Gandaryus ;
Maulana, Arifin Luthfi ;
Ramelan, Aditianto ;
Nuruddin, Ahmad ;
Rustad, Supriadi ;
Dipojono, Hermawan Kresno .
APPLIED SURFACE SCIENCE, 2023, 615