A noval transparent triboelectric nanogenerator as electronic skin for real-time breath monitoring

被引:12
作者
Pan, Juan [1 ,3 ]
Sun, Wuliang [2 ,3 ]
Li, Xin [1 ]
Hao, Yutao [3 ]
Bai, Yu [4 ,5 ]
Nan, Ding [1 ]
机构
[1] Inner Mongolia Univ, Coll Chem & Chem Engn, Hohhot 010021, Peoples R China
[2] Inner Mongolia Univ Technol, Sch Mat Sci & Engn, Hohhot 010051, Peoples R China
[3] Inst Appl Nanotechnol, Jiaxing 314031, Zhejiang, Peoples R China
[4] Shanghai XFH Sci & Technol Dev Co Ltd, Bldg A7,11 Lane 635,Xiaoyun Rd, Shanghai 200949, Peoples R China
[5] Shenzhen XFH Sci & Technol Co Ltd, Shenzhen 518071, Peoples R China
关键词
Electronic skin; Electrospun nanofibers; Breathe monitoring; Triboelectric nanogenerators; ENERGY; PERFORMANCE; SENSORS; SYSTEM;
D O I
10.1016/j.jcis.2024.05.127
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Against the backdrop of advancements in modern multifunctional wearable electronics, there is a growing demand for simple, sustainable, and portable electronic skin (e -skin), posing significant challenges. This study aims to delineate the development of a straightforward, transparent, highly sensitive, and high power -density electronic skin based on a triboelectric nanogenerator(S-TENG), designed for harvesting human body energy and real-time monitoring of the physiological motion status. Our e -skin incorporates thermally treated polyvinylidene fluoride (PVDF) fiber membranes as the contact layer and a film of silver nanowires as the conductive electrodes. The resulting contact -separation type e -skin exhibits an impressive transparency of 80 %, along with a nice sensitivity value, capable of detecting a light touch from a 0.13 g sponge and demonstrating good working stability and breathability. Leveraging the triboelectric effect, our e -skin generates an open -circuit voltage of 301 V and a short-circuit current of 2.7 mu A under an extrinsic force of 8 N over an interaction area of 4 x 4 cm 2 , achieving a power density up to 306 mW/m 2 . With its signal processing circuitry, the integrated S-TENG showcases nice energy harvesting and signal transmission capabilities. Accordingly, we contend that S-TENG has potential applications in energy capture and real-time human motion state monitoring. This research is anticipated to blaze a novel and practical trail for self -powered wearable devices and personalized health rehabilitation training regimens.
引用
收藏
页码:336 / 343
页数:8
相关论文
共 35 条
[1]   Respiration rate and volume measurements using wearable strain sensors [J].
Chu, Michael ;
Thao Nguyen ;
Pandey, Vaibhav ;
Zhou, Yongxiao ;
Pham, Hoang N. ;
Bar-Yoseph, Ronen ;
Radom-Aizik, Shlomit ;
Jain, Ramesh ;
Cooper, Dan M. ;
Khine, Michelle .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[2]   Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring [J].
Dagdeviren, Canan ;
Su, Yewang ;
Joe, Pauline ;
Yona, Raissa ;
Liu, Yuhao ;
Kim, Yun-Soung ;
Huang, YongAn ;
Damadoran, Anoop R. ;
Xia, Jing ;
Martin, Lane W. ;
Huang, Yonggang ;
Rogers, John A. .
NATURE COMMUNICATIONS, 2014, 5
[3]   Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence [J].
Dong, Kai ;
Peng, Xiao ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2020, 32 (05)
[4]   Local Crack-Programmed Gold Nanowire Electronic Skin Tattoos for In-Plane Multisensor Integration [J].
Gong, Shu ;
Yap, Lim Wei ;
Zhu, Bowen ;
Zhai, Qingfeng ;
Liu, Yiyi ;
Lyu, Quanxia ;
Wang, Kaixuan ;
Yang, Mingjie ;
Ling, Yunzhi ;
Lai, Daniel T. H. ;
Marzbanrad, Faezeh ;
Cheng, Wenlong .
ADVANCED MATERIALS, 2019, 31 (41)
[5]   Multifunctional Skin-Like Electronics for Quantitative, Clinical Monitoring of Cutaneous Wound Healing [J].
Hattori, Yoshiaki ;
Falgout, Leo ;
Lee, Woosik ;
Jung, Sung-Young ;
Poon, Emily ;
Lee, Jung Woo ;
Na, Ilyoun ;
Geisler, Amelia ;
Sadhwani, Divya ;
Zhang, Yihui ;
Su, Yewang ;
Wang, Xiaoqi ;
Liu, Zhuangjian ;
Xia, Jing ;
Cheng, Huanyu ;
Webb, R. Chad ;
Bonifas, Andrew P. ;
Won, Philip ;
Jeong, Jae-Woong ;
Jang, Kyung-In ;
Song, Young Min ;
Nardone, Beatrice ;
Nodzenski, Michael ;
Fan, Jonathan A. ;
Huang, Yonggang ;
West, Dennis P. ;
Paller, Amy S. ;
Alam, Murad ;
Yeo, Woon-Hong ;
Rogers, John A. .
ADVANCED HEALTHCARE MATERIALS, 2014, 3 (10) :1597-1607
[6]   Enhancing output performance of PVDF-HFP fiber-based nanogenerator by hybridizing silver nanowires and perovskite oxide nanocrystals [J].
He, Yilin ;
Wang, Haoyu ;
Sha, Zhao ;
Boyer, Cyrille ;
Wang, Chun-Hui ;
Zhang, Jin .
NANO ENERGY, 2022, 98
[7]   Stretchable, Washable, and Ultrathin Triboelectric Nanogenerators as Skin-Like Highly Sensitive Self-Powered Haptic Sensors [J].
Jiang, Yang ;
Dong, Kai ;
Li, Xin ;
An, Jie ;
Wu, Dequan ;
Peng, Xiao ;
Yi, Jia ;
Ning, Chuan ;
Cheng, Renwei ;
Yu, Pengtao ;
Wang, Zhong Lin .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (01)
[8]   Self-healing soft electronics [J].
Kang, Jiheong ;
Tok, Jeffrey B-H ;
Bao, Zhenan .
NATURE ELECTRONICS, 2019, 2 (04) :144-150
[9]   Triboelectric Nanogenerators for Blue Energy Harvesting [J].
Khan, Usman ;
Kim, Sang-Woo .
ACS Nano, 2016, 10 (07) :6429-6432
[10]   Colorless, Transparent, Robust, and Fast Scratch-Self-Healing Elastomers via a Phase-Locked Dynamic Bonds Design [J].
Lai, Yue ;
Kuang, Xiao ;
Zhu, Ping ;
Huang, Miaoming ;
Dong, Xia ;
Wang, Dujin .
ADVANCED MATERIALS, 2018, 30 (38)