Convergence of limit shapes for 2D near-critical first-passage percolation

被引:0
作者
Yao, Chang -Long [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2024年 / 60卷 / 02期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
First-passage percolation; Near-critical percolation; Scaling limit; Correlation length; Shape theorem; SCALING LIMITS; ENSEMBLES; EXPONENTS;
D O I
10.1214/22-AIHP1349
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Bernoulli first-passage percolation on the triangular lattice in which sites have 0 and 1 passage times with probability p and 1 - p, respectively. For each p is an element of (0, pc), let B(p) be the limit shape in the classical "shape theorem", and let L(p) be the correlation length. We show that as p up arrow pc, the rescaled limit shape L(p)-1B(p) converges to a Euclidean disk. This improves a result of Chayes et al. [J. Stat. Phys. 45 (1986) 933-951]. The proof relies on the scaling limit of near-critical percolation established by Garban et al. [J. Eur. Math. Soc. 20 (2018) 1195-1268], and uses the construction of the collection of continuum clusters in the scaling limit introduced by Camia et al. [Springer Proceedings in Mathematics & Statistics, 299 (2019) 44-89].
引用
收藏
页码:1295 / 1333
页数:39
相关论文
共 41 条
  • [1] Scaling limits for the threshold window: When does a monotone Boolean function flip its outcome?
    Ahlberg, Daniel
    Steif, Jeffrey E.
    Pete, Gabor
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 2135 - 2161
  • [2] Auffinger A., 2017, U LECT SERIES, V68, DOI DOI 10.1090/ULECT/068
  • [3] ON MONOCHROMATIC ARM EXPONENTS FOR 2D CRITICAL PERCOLATION
    Beffara, Vincent
    Nolin, Pierre
    [J]. ANNALS OF PROBABILITY, 2011, 39 (04) : 1286 - 1304
  • [4] Bollobas B., 2006, Percolation, DOI DOI 10.1017/CBO9781139167383
  • [5] Two-dimensional critical percolation: The full scaling limit
    Camia, Federico
    Newman, Charles M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (01) : 1 - 38
  • [6] Conformal Measure Ensembles for Percolation and the FK-Ising Model
    Camia, Federico
    Conijn, Rene
    Kiss, Demeter
    [J]. SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - II: BROWNIAN WEB AND PERCOLATION, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 299 : 44 - 89
  • [7] CRITICAL-BEHAVIOR OF THE TWO-DIMENSIONAL 1ST PASSAGE TIME
    CHAYES, JT
    CHAYES, L
    DURRETT, R
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1986, 45 (5-6) : 933 - 951
  • [8] ON THE CONTINUITY OF THE TIME CONSTANT OF 1ST-PASSAGE PERCOLATION
    COX, JT
    KESTEN, H
    [J]. JOURNAL OF APPLIED PROBABILITY, 1981, 18 (04) : 809 - 819
  • [9] Damron M, 2019, Arxiv, DOI arXiv:1904.12009
  • [10] Limit of the Wulff Crystal when approaching criticality for site percolation on the triangular lattice
    Duminil-Copin, Hugo
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 9