A Differential Evolution-based Pseudotime Estimation Method for Single-cell Data

被引:0
作者
Hia, Nazifa Tasnim [1 ,2 ]
Emu, Ishrat Jahan [1 ]
Ibrahim, Muhammad [3 ]
Ahmed, Sumon [1 ]
机构
[1] Univ Dhaka, Inst Informat Technol, Dhaka 1000, Bangladesh
[2] Univ Liberal Arts Bangladesh, Dept Comp Sci & Engn, Dhaka 1207, Bangladesh
[3] Univ Dhaka, Dept Comp Sci & Engn, Dhaka 1000, Bangladesh
关键词
Pseudotime estimation; trajectory inference; single-; cell; differential evolution; RNA-seq; RNA-SEQ;
D O I
10.14569/IJACSA.2024.01506150
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The analysis of single-cell genomics data creates an intriguing opportunity for researchers to examine the complex biological system more closely but is challenging due to inherent biological and technical noise. One popular approach involves learning a lower dimensional manifold or pseudotime trajectory through the data that can capture the primary sources of variation in the data. A smooth function of pseudotime then can be used to align gene expression patterns through the lineages in the trajectory which later facilitates downstream analysis such as heterogeneous cell type identification. Here, we propose a differential evolution based pseudotime estimation method. The model operates on continuous search space and allows easy integration of the cell capture time information in the inference process. The suitability of the proposed model is investigated by applying it on benchmarking single-cell data sets collected from different organisms using different assaying techniques. The experimental result shows the model's capability of producing plausible biological insights about cell ordering which makes it an appealing choice for pseudoitme estimation using single-cell transcriptome data.
引用
收藏
页码:1504 / 1513
页数:10
相关论文
共 40 条
  • [1] Ahmed S., 2011, Dhaka University Journal of Applied Science and Engineering, V1, P125
  • [2] Ahmed S., 2015, Biojournal of Science and Technology, V2, P1
  • [3] GrandPrix: scaling up the Bayesian GPLVM for single-cell data
    Ahmed, Sumon
    Rattray, Magnus
    Boukouvalas, Alexis
    [J]. BIOINFORMATICS, 2019, 35 (01) : 47 - 54
  • [4] M3Drop: dropout-based feature selection for scRNASeq
    Andrews, Tallulah S.
    Hemberg, Martin
    [J]. BIOINFORMATICS, 2019, 35 (16) : 2865 - 2867
  • [5] High-dimensional analysis of the murine myeloid cell system
    Becher, Burkhard
    Schlitzer, Andreas
    Chen, Jinmiao
    Mair, Florian
    Sumatoh, Hermi R.
    Teng, Karen Wei Weng
    Low, Donovan
    Ruedl, Christiane
    Riccardi-Castagnoli, Paola
    Poidinger, Michael
    Greter, Melanie
    Ginhoux, Florent
    Newell, Evan W.
    [J]. NATURE IMMUNOLOGY, 2014, 15 (12) : 1181 - 1189
  • [6] Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development
    Bendall, Sean C.
    Davis, Kara L.
    Amir, El-ad David
    Tadmor, Michelle D.
    Simonds, Erin F.
    Chen, Tiffany J.
    Shenfeld, Daniel K.
    Nolan, Garry P.
    Pe'er, Dana
    [J]. CELL, 2014, 157 (03) : 714 - 725
  • [7] Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    Buettner, Florian
    Natarajan, Kedar N.
    Casale, F. Paolo
    Proserpio, Valentina
    Scialdone, Antonio
    Theis, Fabian J.
    Teichmann, Sarah A.
    Marioni, John C.
    Stegie, Oliver
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (02) : 155 - 160
  • [8] A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst
    Buettner, Florian
    Theis, Fabian J.
    [J]. BIOINFORMATICS, 2012, 28 (18) : I626 - I632
  • [9] The single-cell transcriptional landscape of mammalian organogenesis
    Cao, Junyue
    Spielmann, Malte
    Qiu, Xiaojie
    Huang, Xingfan
    Ibrahim, Daniel M.
    Hill, Andrew J.
    Zhang, Fan
    Mundlos, Stefan
    Christiansen, Lena
    Steemers, Frank J.
    Trapnell, Cole
    Shendure, Jay
    [J]. NATURE, 2019, 566 (7745) : 496 - +
  • [10] Making the blastocyst: lessons from the mouse
    Cockburn, Katie
    Rossant, Janet
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2010, 120 (04) : 995 - 1003