Multifidelity & multi-objective Bayesian optimization of hydrogen-air injectors for aircraft propulsion

被引:1
作者
Farjon, Philippe [1 ]
Bertier, Nicolas [1 ]
Dubreuil, Sylvain [2 ,3 ]
Morio, Jerome [2 ,3 ]
机构
[1] Univ Toulouse, ONERA, DMPE, F-31055 Toulouse, France
[2] Univ Toulouse, ONERA, DTIS, F-31055 Toulouse, France
[3] Univ Toulouse, Federat ENAC ISAE SUPAERO ONERA, F-31000 Toulouse, France
关键词
Bayesian optimization; Multifidelity; Hydrogen; Combustion; LARGE-EDDY SIMULATION; GLOBAL OPTIMIZATION; SAMPLING CRITERIA; COMBUSTION; DESIGN; ALGORITHM; STRATEGY; BURNER;
D O I
10.1016/j.ast.2024.109383
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The use of hydrogen as a fuel is a promising way to reduce the emissions of civil aviation but it requires the development of wholly new injectors for the combustion chamber. Thanks to the increase in available computing power, the application of optimization techniques combined with CFD computations is now possible to develop these injectors. Among the optimization approaches, Bayesian optimization is particularly relevant when the objective functions and constraints of the optimization problem are expensive to evaluate which is the case in CFD-based optimization. Besides, the use of a multifidelity strategy allows to reduce the simulation cost of the Bayesian method. Therefore, this paper investigates the application of a multifidelity and multi-objective Bayesian approach to improve the performances of a laboratory swirl injector using hydrogen and operating in conditions close to industrial targets. This optimization study combines LES simulations as high-fidelity model with 2D RANS simulations as low-fidelity.
引用
收藏
页数:17
相关论文
共 66 条
[1]   A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors [J].
Asgari, Behrad ;
Amani, Ehsan .
APPLIED ENERGY, 2017, 203 :696-710
[2]   Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design [J].
Bartoli, N. ;
Lefebvre, T. ;
Dubreuil, S. ;
Olivanti, R. ;
Priem, R. ;
Bons, N. ;
Martins, J. R. R. A. ;
Morlier, J. .
AEROSPACE SCIENCE AND TECHNOLOGY, 2019, 90 :85-102
[3]   Large-Eddy Simulation of the lean-premixed PRECCINSTA burner with wall heat loss [J].
Benard, P. ;
Lartigue, G. ;
Moureau, V ;
Mercier, R. .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (04) :5233-5243
[4]   Cassiopee: A CFD pre- and post-processing tool [J].
Benoit, Christophe ;
Peron, Stephanie ;
Landier, Sam .
AEROSPACE SCIENCE AND TECHNOLOGY, 2015, 45 :272-283
[5]   A Python']Python surrogate modeling framework with derivatives [J].
Bouhlel, Mohamed Amine ;
Hwang, John T. ;
Bartoli, Nathalie ;
Lafage, Remi ;
Morlier, Joseph ;
Martins, Joaquim R. R. A. .
ADVANCES IN ENGINEERING SOFTWARE, 2019, 135
[6]   An evaluation of RANS turbulence modelling for aerodynamic applications [J].
Catalano, P ;
Amato, M .
AEROSPACE SCIENCE AND TECHNOLOGY, 2003, 7 (07) :493-509
[7]   Towards a multi-fidelity & multi-objective Bayesian optimization efficient algorithm [J].
Charayron, Remy ;
Lefebvre, Thierry ;
Bartoli, Nathalie ;
Morlier, Joseph .
AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 142
[8]  
Cochet A., 2016, AerospaceLab J.
[9]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[10]   Computational-Fluid-Dynamics-Based Kriging Optimization Tool for Aeronautical Combustion Chambers [J].
Duchaine, F. ;
Morel, T. ;
Gicquel, L. Y. M. .
AIAA JOURNAL, 2009, 47 (03) :631-645