Predicting battery lifetime under varying usage conditions from early aging data

被引:15
作者
Li, Tingkai [1 ]
Zhou, Zihao [2 ]
Thelen, Adam [3 ]
Howey, David A. [2 ]
Hu, Chao [1 ]
机构
[1] Univ Connecticut, Sch Mech Aerosp & Mfg Engn, Storrs, CT 06269 USA
[2] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[3] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
LITHIUM-ION BATTERIES; PROGNOSTICS; PERFORMANCE; SELECTION; MODELS; CELLS;
D O I
10.1016/j.xcrp.2024.101891
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Accurate battery lifetime prediction is important for maintenance, warranties, and cell design. However, manufacturing variability and usage -dependent degradation make life prediction challenging. Here, we investigate new features derived from capacityvoltage data in early life to predict the lifetime of cells cycled under varying charge rates, discharge rates, and depths of discharge. The early -life features capture a cell's state of health and the change rate of component -level degradation modes. Using a newly generated dataset from 225 nickel-manganese-cobalt/graphite lithium -ion cells aged under a wide range of conditions, we demonstrate a lifetime prediction of in -distribution cells with 15.1% mean absolute percentage error (MAPE). A hierarchical Bayesian model shows improved performance on extrapolation, achieving 21.8% MAPE for out -of -distribution cells. Our approach highlights the importance of using domain knowledge of battery degradation to inform feature engineering and model construction. Further, a new publicly available battery lifelong aging dataset is provided.
引用
收藏
页数:23
相关论文
共 54 条
[1]   Review-"Knees" in Lithium-Ion Battery Aging Trajectories [J].
Attia, Peter M. ;
Bills, Alexander ;
Brosa Planella, Ferran ;
Dechent, Philipp ;
dos Reis, Goncalo ;
Dubarry, Matthieu ;
Gasper, Paul ;
Gilchrist, Richard ;
Greenbank, Samuel ;
Howey, David ;
Liu, Ouyang ;
Khoo, Edwin ;
Preger, Yuliya ;
Soni, Abhishek ;
Sripad, Shashank ;
Stefanopoulou, Anna G. ;
Sulzer, Valentin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (06)
[2]   Closed-loop optimization of fast-charging protocols for batteries with machine learning [J].
Attia, Peter M. ;
Grover, Aditya ;
Jin, Norman ;
Severson, Kristen A. ;
Markov, Todor M. ;
Liao, Yang-Hung ;
Chen, Michael H. ;
Cheong, Bryan ;
Perkins, Nicholas ;
Yang, Zi ;
Herring, Patrick K. ;
Aykol, Muratahan ;
Harris, Stephen J. ;
Braatz, Richard D. ;
Ermon, Stefano ;
Chueh, William C. .
NATURE, 2020, 578 (7795) :397-+
[3]   Production caused variation in capacity aging trend and correlation to initial cell performance [J].
Baumhoefer, Thorsten ;
Bruehl, Manuel ;
Rothgang, Susanne ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2014, 247 :332-338
[4]  
Berecibar M, 2016, IEEE VEHICLE POWER
[5]  
Berecibar M., 2016, WORLD ELECTR VEHIC J, V8, P350, DOI [10.3390/wevj8020350, DOI 10.3390/WEVJ8020350]
[6]   Faster Algorithms for the Constrained k-means Problem [J].
Bhattacharya, Anup ;
Jaiswal, Ragesh ;
Kumar, Amit .
THEORY OF COMPUTING SYSTEMS, 2018, 62 (01) :93-115
[7]   Degradation diagnostics for lithium ion cells [J].
Birkl, Christoph R. ;
Roberts, Matthew R. ;
McTurk, Euan ;
Bruce, Peter G. ;
Howey, David A. .
JOURNAL OF POWER SOURCES, 2017, 341 :373-386
[8]  
Bole B., 2014, NNUAL C PHM SOC, P1, DOI [10.36001/phmconf.2014.v6i1.2490, DOI 10.36001/PHMCONF.2014.V6I1.2490]
[9]   Predicting and Extending the Lifetime of Li-Ion Batteries [J].
Burns, J. C. ;
Kassam, Adil ;
Sinha, N. N. ;
Downie, L. E. ;
Solnickova, Lucie ;
Way, B. M. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (09) :A1451-A1456
[10]   Evaluation of Effects of Additives in Wound Li-Ion Cells Through High Precision Coulometry [J].
Burns, J. C. ;
Jain, Gaurav ;
Smith, A. J. ;
Eberman, K. W. ;
Scott, Erik ;
Gardner, J. P. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :A255-A261