Noise source localization using deep learning

被引:0
作者
Zhou, Jie [1 ]
Mi, Binbin [1 ]
Xia, Jianghai [1 ]
Zhang, Hao [2 ]
Liu, Ya [1 ]
Chen, Xinhua [1 ]
Guan, Bo [1 ]
Hong, Yu [1 ]
Ma, Yulong [1 ]
机构
[1] Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R China
[2] Chinese Acad Sci, GBA Branch, Aerosp Informat Res Inst, Guangzhou 510700, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Interferometry; Machine learning; Computational seismology; Seismic noise; Surface waves and free oscillations; P-PHASE; MULTICHANNEL ANALYSIS; FIELD; EARTHQUAKE; RAYLEIGH; INVERSION; PICKING; WAVES; HYPOCENTER; LOCATION;
D O I
10.1093/gji/ggae171
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Ambient noise source localization is of great significance for estimating seismic noise source distribution, understanding source mechanisms and imaging subsurface structures. The commonly used methods for source localization, such as the matched field processing and the full-waveform inversion, are time-consuming and not applicable for time-lapse monitoring of the noise source distribution. We propose an efficient alternative of using deep learning for noise source localization. In the neural network, the input data are noise cross-correlation functions and the output are matrices containing the information of noise source distribution. It is assumed that the subsurface structure is a horizontally layered earth model and the model parameters are known. A wavefield superposition method is used to efficiently simulate ambient noise data with quantities of local noise sources labelled as training data sets. We use a weighted binary cross-entropy loss function to address the prediction inaccuracy caused by a sparse label matrix during training. The proposed deep learning framework is validated by synthetic tests and two field data examples. The successful applications to locate an anthropogenic noise source and a carbon dioxide degassing area demonstrate the accuracy and efficiency of the proposed deep learning method for noise source localization, which has great potential for monitoring the changes of the noise source distribution in a survey area.
引用
收藏
页码:513 / 536
页数:24
相关论文
共 67 条
[51]   3-D fluid channel location from noise tremors using matched field processing [J].
Umlauft, J. ;
Korn, M. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 219 (03) :1550-1561
[52]   Mapping Glacier Basal Sliding Applying Machine Learning [J].
Umlauft, Josefine ;
Johnson, Christopher W. ;
Roux, Philippe ;
Trugman, Daniel Taylor ;
Lecointre, Albanne ;
Walpersdorf, Andrea ;
Nanni, Ugo ;
Gimbert, Florent ;
Rouet-Leduc, Bertrand ;
Hulbert, Claudia ;
Luedtke, Stefan ;
Marton, Sascha ;
Johnson, Paul A. .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2023, 128 (11)
[53]   Linking microseismic event observations with geomechanical models to minimise the risks of storing CO2 in geological formations [J].
Verdon, J. P. ;
Kendall, J. -M. ;
White, D. J. ;
Angus, D. A. .
EARTH AND PLANETARY SCIENCE LETTERS, 2011, 305 (1-2) :143-152
[54]   Using glacier seismicity for phase velocity measurements and Green's function retrieval [J].
Walter, Fabian ;
Roux, Philippe ;
Roeoesli, Claudia ;
Lecointre, Albanne ;
Kilb, Debi ;
Roux, Pierre-Francois .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 201 (03) :1722-1737
[55]   Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies [J].
Weaver, RL ;
Lobkis, OI .
PHYSICAL REVIEW LETTERS, 2001, 87 (13) :1-134301
[56]   Adaptive Feedback Convolutional-Neural-Network-Based High-Resolution Reflection-Waveform Inversion [J].
Wu, Yulang ;
McMechan, George A. ;
Wang, Yanfei .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (06)
[57]   Estimation of Resolution and Covariance of Ambient Seismic Source Distributions: Full Waveform Inversion and Matched Field Processing [J].
Xu, Zongbo ;
Mikesell, T. Dylan .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (06)
[58]   Rayleigh-wave multicomponent crosscorrelation-based source strength distribution inversions. Part 2: a workflow for field seismic data [J].
Xu, Zongbo ;
Mikesell, T. Dylan ;
Umlauft, Josefine ;
Gribler, Gabriel .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 222 (03) :2084-2101
[59]   Rayleigh-wave multicomponent cross-correlation-based source strength distribution inversion. Part 1: Theory and numerical examples [J].
Xu, Zongbo ;
Mikesell, T. Dylan ;
Gribler, Gabriel ;
Mordret, Aurelien .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 218 (03) :1761-1780
[60]   Ambient noise rayleigh wave tomography across Europe [J].
Yang, Yingjie ;
Ritzwoller, Michael H. ;
Levshin, Anatoli L. ;
Shapiro, Nikolai M. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 168 (01) :259-274