机构:
Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R ChinaZhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R China
Zhou, Jie
[1
]
Mi, Binbin
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R ChinaZhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R China
Mi, Binbin
[1
]
Xia, Jianghai
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R ChinaZhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R China
Xia, Jianghai
[1
]
Zhang, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, GBA Branch, Aerosp Informat Res Inst, Guangzhou 510700, Guangdong, Peoples R ChinaZhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R China
Zhang, Hao
[2
]
Liu, Ya
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R ChinaZhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R China
Liu, Ya
[1
]
Chen, Xinhua
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R ChinaZhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R China
Chen, Xinhua
[1
]
Guan, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R ChinaZhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R China
Guan, Bo
[1
]
Hong, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R ChinaZhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R China
Hong, Yu
[1
]
Ma, Yulong
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R ChinaZhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R China
Ma, Yulong
[1
]
机构:
[1] Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou 310058, Zhejiang, Peoples R China
[2] Chinese Acad Sci, GBA Branch, Aerosp Informat Res Inst, Guangzhou 510700, Guangdong, Peoples R China
Ambient noise source localization is of great significance for estimating seismic noise source distribution, understanding source mechanisms and imaging subsurface structures. The commonly used methods for source localization, such as the matched field processing and the full-waveform inversion, are time-consuming and not applicable for time-lapse monitoring of the noise source distribution. We propose an efficient alternative of using deep learning for noise source localization. In the neural network, the input data are noise cross-correlation functions and the output are matrices containing the information of noise source distribution. It is assumed that the subsurface structure is a horizontally layered earth model and the model parameters are known. A wavefield superposition method is used to efficiently simulate ambient noise data with quantities of local noise sources labelled as training data sets. We use a weighted binary cross-entropy loss function to address the prediction inaccuracy caused by a sparse label matrix during training. The proposed deep learning framework is validated by synthetic tests and two field data examples. The successful applications to locate an anthropogenic noise source and a carbon dioxide degassing area demonstrate the accuracy and efficiency of the proposed deep learning method for noise source localization, which has great potential for monitoring the changes of the noise source distribution in a survey area.
引用
收藏
页码:513 / 536
页数:24
相关论文
共 67 条
[11]
Corciulo M, 2012, GEOPHYSICS, V77, pKS33, DOI [10.1190/geo2011-0438.1, 10.1190/GEO2011-0438.1]
机构:
Univ Tasmania, Sch Phys Sci, Hobart, Tas, AustraliaUniv Tasmania, Sch Phys Sci, Hobart, Tas, Australia
Gal, M.
;
Reading, A. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tasmania, Sch Phys Sci, Hobart, Tas, AustraliaUniv Tasmania, Sch Phys Sci, Hobart, Tas, Australia
Reading, A. M.
;
Rawlinson, N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Dept Earth Sci, Cambridge, EnglandUniv Tasmania, Sch Phys Sci, Hobart, Tas, Australia
Rawlinson, N.
;
Schulte-Pelkum, V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USAUniv Tasmania, Sch Phys Sci, Hobart, Tas, Australia
机构:
Univ Tasmania, Sch Phys Sci, Hobart, Tas, AustraliaUniv Tasmania, Sch Phys Sci, Hobart, Tas, Australia
Gal, M.
;
Reading, A. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tasmania, Sch Phys Sci, Hobart, Tas, AustraliaUniv Tasmania, Sch Phys Sci, Hobart, Tas, Australia
Reading, A. M.
;
Rawlinson, N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Dept Earth Sci, Cambridge, EnglandUniv Tasmania, Sch Phys Sci, Hobart, Tas, Australia
Rawlinson, N.
;
Schulte-Pelkum, V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USAUniv Tasmania, Sch Phys Sci, Hobart, Tas, Australia