A Random Forest-Convolutional Neural Network Deep Learning Model for Predicting the Wholesale Price Index of Potato in India

被引:3
作者
Ray, Soumik [1 ]
Biswas, Tufleuddin [1 ]
Emam, Walid [2 ]
Yadav, Shikha [3 ]
Lal, Priyanka [4 ]
Mishra, Pradeep [5 ]
机构
[1] Centurion Univ Technol & Management, Dept Agr Econ & Stat, Paralakhemundi, Odisha, India
[2] King Saud Univ, Fac Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia
[3] Univ Delhi, Dept Geog, New Delhi 11007, India
[4] Lovely Profess Univ, Sch Agr, Dept Agr Econ & Extens, Phagwara, Punjab, India
[5] Jawaharlal Nehru Krishi Vishwa Vidyalaya JNKVV, Coll Agr, Rewa 486001, India
关键词
Convolutional Neural Network; Deep learning; Long Short-Term Memory; Potato wholesale price index; Time series analysis; ART;
D O I
10.1007/s11540-024-09736-x
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The wholesale price index (WPI) is a crucial economic indicator that provides insights into the pricing dynamics of different goods within a country, especially potato commodities. In this study, we tried to build a hybrid machine learning model technique for predicting the volatile price index of potato. We introduced the Random Forest-Convolutional Neural Network (RF-CNN) model to predict agricultural volatility price index commodities. Traditional statistical time series models (Autoregressive Integrated Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH)) were also investigated for comparison with machine learning models (Support Vector Machine (SVM), Long Short-Term Memory (LSTM), and Convolutional Neural Network (CNN)). Because the data set was volatile, the GARCH model outperformed the ARIMA model which had a lower goodness of fit value. The performance of the SVM model was comparable to that of the statistical models. However, after utilizing an input lag selection strategy based on autocorrelation function (ACF) and RF, the machine learning models outperformed the statistical models. We used LSTM and CNN models with the appropriate input lag feature assessed by ACF and RF. Our findings indicate that the RF-CNN model beats the other models in terms of error accuracy, with improvements of 67% for root mean square error, 95% for mean absolute percentage error, 63% for mean absolute error and mean absolute squared error on the training set, and more than 90% on the testing set for all goodness of fit. Based on the error accuracy, the RF-CNN model can be utilized to better predict the potato price index in the long term. We hope our study will benefit stakeholders and policymakers by providing a realistic potato price forecast. Furthermore, our study contributes to the growing corpus of research on machine learning models for time series.
引用
收藏
页码:263 / 279
页数:17
相关论文
共 50 条
  • [21] Convolutional neural network-based deep learning model for air quality prediction in October city of Egypt
    Elshaboury, Nehal
    Abdelkader, Eslam Mohammed
    Al-Sakkaf, Abobakr
    CONSTRUCTION INNOVATION-ENGLAND, 2025, 25 (02): : 620 - 640
  • [22] Deep Learning Wind Power Prediction Model Based on Attention Mechanism-Based Convolutional Neural Network and Gated Recurrent Unit Neural Network
    Hou, Zai-Hong
    Bai, Yu-Long
    Ding, Lin
    Yue, Xiao-Xin
    Huang, Yu-Ting
    Song, Wei
    Bi, Qi
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (16)
  • [23] A New Deep Learning Model for the Classification of Poisonous and Edible Mushrooms Based on Improved AlexNet Convolutional Neural Network
    Ketwongsa, Wacharaphol
    Boonlue, Sophon
    Kokaew, Urachart
    APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [24] A deep learning convolutional neural network and multi-layer perceptron hybrid fusion model for predicting the mechanical properties of carbon fiber
    Li, Mengze
    Li, Shuran
    Tian, Yu
    Fu, Yihan
    Pei, Yanliang
    Zhu, Weidong
    Ke, Yinglin
    MATERIALS & DESIGN, 2023, 227
  • [25] Deep Learning for Predicting Spheroid Viability: Novel Convolutional Neural Network Model for Automating Quality Control for Three-Dimensional Bioprinting
    Sheikh, Zyva A.
    Clarke, Oliver
    Mir, Amatullah
    Hibino, Narutoshi
    BIOENGINEERING-BASEL, 2025, 12 (01):
  • [26] Deep Neural Network and Random Forest Hybrid Architecture for Learning to Detect Retinal Vessels in Fundus Images
    Maji, Debapriya
    Santara, Anirban
    Ghosh, Sambuddha
    Sheet, Debdoot
    Mitra, Pabitra
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 3029 - 3032
  • [27] Classifying multi-category images using Deep Learning : A Convolutional Neural Network Model
    Bandhu, Ardhendu
    Roy, Sanjiban Sekhar
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 915 - 919
  • [28] Exploration of artistic creation of Chinese ink style painting based on deep learning framework and convolutional neural network model
    Shuangshuang Chen
    Soft Computing, 2020, 24 : 7873 - 7884
  • [29] Exploration of artistic creation of Chinese ink style painting based on deep learning framework and convolutional neural network model
    Chen, Shuangshuang
    SOFT COMPUTING, 2020, 24 (11) : 7873 - 7884
  • [30] Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network
    Liu, Hui
    Mi, Xiwei
    Li, Yanfei
    ENERGY CONVERSION AND MANAGEMENT, 2018, 166 : 120 - 131