Epoxy Fiber Derived All-Polymer Films for High Performance Electrostatic Energy Storage Dielectrics

被引:0
作者
Xu, Pengpeng [1 ,2 ]
Ma, Peilin [2 ]
Yu, Junyi [2 ,3 ,4 ]
Jiang, Kelun [2 ]
Ke, Shanming [5 ]
Huang, Haitao [4 ]
Yu, Shuhui [2 ,3 ]
Zhou, Yangbo [1 ]
Luo, Suibin [2 ,3 ]
机构
[1] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Elect Mat, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Hong Kong Polytech Univ, Mat Res Ctr, Dept Appl Phys, Hong Kong 999077, Peoples R China
[5] Guangzhou Univ, Sch Phys & Mat Sci, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
all-polymer; electrospinning; energy storage; epoxy film; fiber; NANOCOMPOSITES; DENSITY; NANOPARTICLES; COMPOSITES; NANOFIBERS; INTERFACE; BATIO3;
D O I
10.1002/adem.202400440
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dielectric films with high discharged energy density are highly desired in electrical and electronic systems. Adding inorganic nanoparticles, especially for 1D inorganic fillers, in polymer films is recognized as one of the most effective methods to improve the electric breakdown strength, which is a key parameter of energy storage. However, 1D inorganic fillers added into thin films will undoubtedly introduce many defects and reduce the electric insulation performance. Herein, homogeneous epoxy fiber derived all-polymer films are fabricated by electrospinning, laminating, and curing in sequence. The existing 1D structure of the epoxy films significantly enhance the dielectric constant and electric breakdown strength, resulting in a very high enhancement of 2.7 times the discharged energy storage density at 25 degrees C, up to 9.6 J cm-3. Assisted by the simulation analysis, the enhanced dipole polarization and reduced current density are found to be the main reasons for the improved energy storage performances. Preparing all-polymer films with fiber structure has proved to be an effective way to find advanced energy storage dielectric films. The epoxy fiber films fabricated by electrospinning and hot-pressing achieve significantly enhances dielectric energy storage density. The dielectric permittivity and electric breakdown strength could reach 6.89 at 1 kHz and 654 kV cm-1 at room temperature, leading to a high energy density of 9.55 J cm-3. At the same time, the energy discharge efficiency could maintain over 90% at room temperature.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Enhancement of Energy Storage Performance in Polymer Dielectrics via Monodisperse ZrO2 Nanoparticles as Nanofiller
    Li, Shiheng
    Chen, Haoxi
    Cai, Ziming
    Zheng, Guangsen
    Cao, Chu
    Zhu, Chaoqiong
    Zhang, Baojing
    Luo, Hang
    Feng, Peizhong
    SMALL, 2025,
  • [32] Heterostructured n-ZnO@p-CuO nanosheets filled in a polymer matrix for enhanced electrostatic energy storage performance
    Zhang, Weixuan
    Hu, Yuqing
    Zhang, Xin
    Zhang, Yingda
    Liu, Jinzhang
    NANOSCALE, 2024, 16 (38) : 18038 - 18045
  • [33] Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage
    Wang, Rui
    Zhu, Yujie
    Fu, Jing
    Yang, Mingcong
    Ran, Zhaoyu
    Li, Junluo
    Li, Manxi
    Hu, Jun
    He, Jinliang
    Li, Qi
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [34] Unifying and Suppressing Conduction Losses of Polymer Dielectrics for Superior High-Temperature Capacitive Energy Storage
    Yang, Minhao
    Wang, Zepeng
    Zhao, Yanlong
    Liu, Zeren
    Pang, Hui
    Dang, Zhi-Min
    ADVANCED MATERIALS, 2023,
  • [35] Gradient structured all-organic dielectrics by electrospinning for enhanced energy storage performance
    Liu, Yuan
    Luo, Hang
    Chen, Haiyan
    Li, Minxi
    Wan, Yuting
    Peng, Bo
    Li, Xiaona
    Zhang, Dou
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (21) : 12501 - 12514
  • [36] Flexible barium titanate@polydopamine/polyvinylidene fluoride/polymethyl methacrylate nanocomposite films with high performance energy storage
    Wang, Yan
    Yang, Dandan
    Hessien, Mahmoud M.
    Du, Kang
    Ibrahim, Mohamed M.
    Su, Yao
    Mersal, Gaber A. M.
    Ma, Rong
    El-Bahy, Salah M.
    Huang, Mina
    Yuan, Qibin
    Cui, Bin
    Hu, Dengwei
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2022, 5 (03) : 2106 - 2115
  • [37] Annealing and Stretching Induced High Energy Storage Properties in All-Organic Composite Dielectric Films
    Feng, Yefeng
    Peng, Cheng
    Deng, Qihuang
    Li, Yandong
    Hu, Jianbing
    Wu, Qin
    MATERIALS, 2018, 11 (11):
  • [38] High-temperature dielectric polymer composite films of all-organic PVDF/ABS with excellent energy storage performance and stability
    Zhang, Ranran
    Li, Lili
    Long, Shaojun
    Wang, Ping
    Wen, Fei
    Yang, Junzhou
    Wang, Gaofeng
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (09) : 3480 - 3488
  • [39] Significantly Enhanced Electrostatic Energy Storage Performance of Flexible Polymer Composites by Introducing Highly Insulating-Ferroelectric Microhybrids as Fillers
    Luo, Suibin
    Yu, Junyi
    Yu, Shuhui
    Sun, Rong
    Cao, Liqiang
    Liao, Wei-Hsin
    Wong, Ching-Ping
    ADVANCED ENERGY MATERIALS, 2019, 9 (05)
  • [40] Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer
    Xiong, Jie
    Fan, Xing
    Long, Dajiang
    Zhu, Bofeng
    Zhang, Xiao
    Lu, Junyong
    Xie, Yunchuan
    Zhang, Zhicheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (46) : 24611 - 24619