Epoxy Fiber Derived All-Polymer Films for High Performance Electrostatic Energy Storage Dielectrics

被引:0
|
作者
Xu, Pengpeng [1 ,2 ]
Ma, Peilin [2 ]
Yu, Junyi [2 ,3 ,4 ]
Jiang, Kelun [2 ]
Ke, Shanming [5 ]
Huang, Haitao [4 ]
Yu, Shuhui [2 ,3 ]
Zhou, Yangbo [1 ]
Luo, Suibin [2 ,3 ]
机构
[1] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Elect Mat, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Hong Kong Polytech Univ, Mat Res Ctr, Dept Appl Phys, Hong Kong 999077, Peoples R China
[5] Guangzhou Univ, Sch Phys & Mat Sci, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
all-polymer; electrospinning; energy storage; epoxy film; fiber; NANOCOMPOSITES; DENSITY; NANOPARTICLES; COMPOSITES; NANOFIBERS; INTERFACE; BATIO3;
D O I
10.1002/adem.202400440
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dielectric films with high discharged energy density are highly desired in electrical and electronic systems. Adding inorganic nanoparticles, especially for 1D inorganic fillers, in polymer films is recognized as one of the most effective methods to improve the electric breakdown strength, which is a key parameter of energy storage. However, 1D inorganic fillers added into thin films will undoubtedly introduce many defects and reduce the electric insulation performance. Herein, homogeneous epoxy fiber derived all-polymer films are fabricated by electrospinning, laminating, and curing in sequence. The existing 1D structure of the epoxy films significantly enhance the dielectric constant and electric breakdown strength, resulting in a very high enhancement of 2.7 times the discharged energy storage density at 25 degrees C, up to 9.6 J cm-3. Assisted by the simulation analysis, the enhanced dipole polarization and reduced current density are found to be the main reasons for the improved energy storage performances. Preparing all-polymer films with fiber structure has proved to be an effective way to find advanced energy storage dielectric films. The epoxy fiber films fabricated by electrospinning and hot-pressing achieve significantly enhances dielectric energy storage density. The dielectric permittivity and electric breakdown strength could reach 6.89 at 1 kHz and 654 kV cm-1 at room temperature, leading to a high energy density of 9.55 J cm-3. At the same time, the energy discharge efficiency could maintain over 90% at room temperature.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Excellent high-temperature energy storage performance of polymer dielectrics through the synergistic action of conjugation effect inhibition and dipole modulation
    Xiong, Jie
    Li, Meng
    Lu, Teng
    Zhang, Ting
    Hu, Mingyou
    Zhang, Meirong
    Xie, Yunchuan
    Tan, Shaobo
    Gong, Honghong
    Zhang, Zhicheng
    CHEMICAL ENGINEERING JOURNAL, 2025, 507
  • [22] Suppressing the Loss of Polymer-Based Dielectrics for High Power Energy Storage
    Pei, Jia-Yao
    Yin, Li-Juan
    Zhong, Shao-Long
    Dang, Zhi-Min
    ADVANCED MATERIALS, 2023, 35 (03)
  • [23] Rationally designed high-temperature polymer dielectrics for capacitive energy storage: An experimental and computational alliance
    Aklujkar, Pritish S.
    Gurnani, Rishi
    Rout, Pragati
    Khomane, Ashish R.
    Mutegi, Irene
    Desai, Mohak
    Pollock, Amy
    Toribio, John M.
    Hao, Jing
    Cao, Yang
    Ramprasad, Rampi
    Sotzing, Gregory
    PROGRESS IN POLYMER SCIENCE, 2025, 161
  • [24] High-Temperature Polymer Composite Dielectrics: Energy Storage Performance, Large-Scale Preparation, and Device Design
    Li, Xin
    Hu, Penghao
    Jiang, Jianyong
    Pan, Jiayu
    Nan, Ce-Wen
    Shen, Yang
    ADVANCED MATERIALS, 2025, 37 (09)
  • [25] Research progress of polymer based dielectrics for high-temperature capacitor energy storage
    Dong Jiu-Feng
    Deng Xing-Lei
    Niu Yu-Juan
    Pan Zi-Zhao
    Wang Hong
    ACTA PHYSICA SINICA, 2020, 69 (21)
  • [26] All-organic nanocomposite dielectrics contained with polymer dots for high-temperature capacitive energy storage
    Ding, Jiale
    Xu, Wenhan
    Zhu, Xuanbo
    Liu, Zheng
    Zhang, Yunhe
    Jiang, Zhenhua
    NANO RESEARCH, 2023, 16 (07) : 10183 - 10190
  • [27] Polymer-based Nanocomposite Dielectrics with High Energy Storage Capacity
    Jiang W.
    Xie Y.
    Zhang Z.
    Xie, Yunchuan (ycxie@xjtu.edu.cn), 1600, Science Press (43): : 2234 - 2240
  • [28] All-organic nanocomposite dielectrics contained with polymer dots for high-temperature capacitive energy storage
    Jiale Ding
    Wenhan Xu
    Xuanbo Zhu
    Zheng Liu
    Yunhe Zhang
    Zhenhua Jiang
    Nano Research, 2023, 16 : 10183 - 10190
  • [29] Scalable Ultrathin All-Organic Polymer Dielectric Films for High-Temperature Capacitive Energy Storage
    Ren, Weibin
    Yang, Minzheng
    Zhou, Le
    Fan, Youjun
    He, Shan
    Pan, Jiayu
    Tang, Tongxiang
    Xiao, Yao
    Nan, Ce-Wen
    Shen, Yang
    ADVANCED MATERIALS, 2022, 34 (47)
  • [30] All-Organic Dielectrics with High Breakdown Strength and Energy Storage Density for High-Power Capacitors
    Feng, Qi-Kun
    Ping, Jiang-Bo
    Zhu, Jing
    Pei, Jia-Yao
    Huang, Lei
    Zhang, Dong-Li
    Zhao, Yu
    Zhong, Shao-Long
    Dang, Zhi-Min
    MACROMOLECULAR RAPID COMMUNICATIONS, 2021, 42 (12)