Machine learning-assisted image-based optical devices for health monitoring and food safety

被引:18
作者
Mousavizadegan, Maryam [1 ]
Shalileh, Farzaneh [1 ]
Mostajabodavati, Saba [1 ]
Mohammadi, Javad [2 ,3 ]
Hosseini, Morteza [1 ,3 ]
机构
[1] Univ Tehran, Fac New Sci & Technol, Dept Life Sci Engn, Nanobiosensors Lab, Tehran 1439817435, Iran
[2] Univ Tehran, Fac New Sci & Technol, Dept Life Sci Engn, Tehran 1439817435, Iran
[3] Natl Inst Genet Engn & Biotechnol NIGEB, Inst Med Biotechnol IMB, Med Genet Dept, Tehran, Iran
关键词
Image processing; Smartphone; Machine learning; Artificial intelligence; Optical sensors; ARTIFICIAL-INTELLIGENCE; PATHOGEN DETECTION; QUANTIFICATION; CARE; HEMOGLOBIN; BIOSENSORS; CELL; NANOCLUSTERS; BACTERIA; PLATFORM;
D O I
10.1016/j.trac.2024.117794
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The advent of artificial intelligence has highly impacted the process of image processing and pattern recognition, hence influencing biomedical researchers to implement machine learning (ML)-assisted image-based analysis in the development of optical sensors. Optical detection devices provide the optimal platforms for image-based analysis as they exhibit signals that can be captured by cameras. Relying on ML for pattern recognition from the captured images can highly enhance the detection accuracy and pave the way toward developing point-ofcare testing. In this review, we have aimed to present an overview based on image processing and how ML can be implemented in pattern recognition from images. Recent publications on the development of optical detection devices relying on ML-assisted image analysis in various fields of biomedical analysis have then been reviewed.
引用
收藏
页数:23
相关论文
共 200 条
[1]   Nanoplasmonic amplification in microfluidics enables accelerated colorimetric quantification of nucleic acid biomarkers from pathogens [J].
AbdElFatah, Tamer ;
Jalali, Mahsa ;
Yedire, Sripadh Guptha ;
Hosseini, Imman I. ;
Mata, Carolina del Real ;
Khan, Haleema ;
Hamidi, Seyed Vahid ;
Jeanne, Olivia ;
Moakhar, Roozbeh Siavash ;
McLean, Myles ;
Patel, Dhanesh ;
Wang, Zhen ;
McKay, Geoffrey ;
Yousefi, Mitra ;
Nguyen, Dao ;
Vidal, Silvia M. ;
Liang, Chen ;
Mahshid, Sara .
NATURE NANOTECHNOLOGY, 2023, 18 (08) :922-+
[2]   Deep learning for biological image classification [J].
Affonso, Carlos ;
Debiaso Rossi, Andre Luis ;
Antunes Vieira, Fabio Henrique ;
de Leon Ferreira de Carvalho, Andre Carlos Ponce .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 85 :114-122
[3]   Highly sensitive quantitative phase microscopy and deep learning aided with whole genome sequencing for rapid detection of infection and antimicrobial resistance [J].
Ahmad, Azeem ;
Hettiarachchi, Ramith ;
Khezri, Abdolrahman ;
Singh Ahluwalia, Balpreet ;
Wadduwage, Dushan N. ;
Ahmad, Rafi .
FRONTIERS IN MICROBIOLOGY, 2023, 14
[4]  
Alemu A. G., 2022, ADV NANOMATERIALS PO, P181, DOI [DOI 10.1016/B978-0-323-85725-3.00009-X, 10.1016/B978-0-323-85725-3.00009-X]
[5]   Deep Machine Learning-A New Frontier in Artificial Intelligence Research [J].
Arel, Itamar ;
Rose, Derek C. ;
Karnowski, Thomas P. .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2010, 5 (04) :13-18
[6]   The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions [J].
Arsene, Mbarga Manga Joseph ;
Davares, Anyutoulou Kitio Linda ;
Viktorovna, Podoprigora Irina ;
Andreevna, Smolyakova Larissa ;
Sarra, Souadkia ;
Khelifi, Ibrahim ;
Sergueievna, Das Milana .
VETERINARY WORLD, 2022, 15 (03) :662-671
[7]  
Awcock G.J., 1995, APPL IMAGE PROCESSIN, DOI DOI 10.1007/978-1-349-13049-8
[8]   Hemoglobin detection using carbon dots as a fluorescence probe [J].
Barati, Ali ;
Shamsipur, Mojtaba ;
Abdollahi, Hamid .
BIOSENSORS & BIOELECTRONICS, 2015, 71 :470-475
[9]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[10]   Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays [J].
Berg, Brandon ;
Cortazar, Bingen ;
Tseng, Derek ;
Ozkan, Haydar ;
Feng, Steve ;
Wei, Qingshan ;
Chan, Raymond Yan-Lok ;
Burbano, Jordi ;
Farooqui, Qamar ;
Lewinski, Michael ;
Di Carlo, Dino ;
Garner, Omai B. ;
Ozcan, Aydogan .
ACS NANO, 2015, 9 (08) :7857-7866