Regularizing Brain Age Prediction via Gated Knowledge Distillation

被引:0
作者
Yang, Yanwu [1 ,2 ]
Guo, Xutao [1 ,2 ]
Ye, Chenfei [2 ]
Xiang, Yang [2 ]
Ma, Ting [1 ,2 ,3 ,4 ]
机构
[1] Harbin Inst Technol Shenzhen, Shenzhen, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] Capital Med Univ, Beijing, Peoples R China
[4] Capital Med Univ, Xuanwu Hosp, Beijing, Peoples R China
来源
INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172 | 2022年 / 172卷
基金
中国国家自然科学基金;
关键词
Knowledge distillation; Brain age estimation; Regularization; DISEASE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The brain age has been proven a phenotype with relevance to cognitive performance and brain disease. With the development of deep learning, brain age estimation accuracy has been greatly improved. However, such methods may incur over-fitting and suffer from poor generalizations, especially for insufficient brain imaging data. This paper presents a novel regularization method that penalizes the predictive distribution using knowledge distillation and introduces additional knowledge to reinforce the learning process. During knowledge distillation, we propose a gated distillation mechanism to enable the student model to attentively learn key knowledge from the teacher model, given the assumption that the teacher may not always be correct. Moreover, to enhance the capability of knowledge transfer, the hint representation similarity is also adopted to regularize the model training. We evaluate the model by a cohort of 3655 subjects from 4 public datasets, demonstrating that the proposed method improves the prediction performance over several well-established models, where the mean absolute error of the estimated ages is 2.129 years.
引用
收藏
页码:1430 / 1443
页数:14
相关论文
共 30 条
  • [11] Densely Connected Convolutional Networks
    Huang, Gao
    Liu, Zhuang
    van der Maaten, Laurens
    Weinberger, Kilian Q.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2261 - 2269
  • [12] The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods
    Jack, Clifford R., Jr.
    Bernstein, Matt A.
    Fox, Nick C.
    Thompson, Paul
    Alexander, Gene
    Harvey, Danielle
    Borowski, Bret
    Britson, Paula J.
    Whitwell, Jennifer L.
    Ward, Chadwick
    Dale, Anders M.
    Felmlee, Joel P.
    Gunter, Jeffrey L.
    Hill, Derek L. G.
    Killiany, Ron
    Schuff, Norbert
    Fox-Bosetti, Sabrina
    Lin, Chen
    Studholme, Colin
    DeCarli, Charles S.
    Krueger, Gunnar
    Ward, Heidi A.
    Metzger, Gregory J.
    Scott, Katherine T.
    Mallozzi, Richard
    Blezek, Daniel
    Levy, Joshua
    Debbins, Josef P.
    Fleisher, Adam S.
    Albert, Marilyn
    Green, Robert
    Bartzokis, George
    Glover, Gary
    Mugler, John
    Weiner, Michael W.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 27 (04) : 685 - 691
  • [13] Brain age prediction using deep learning uncovers associated sequence variants
    Jonsson, B. A.
    Bjornsdottir, G.
    Thorgeirsson, T. E.
    Ellingsen, L. M.
    Walters, G. Bragi
    Gudbjartsson, D. F.
    Stefansson, H.
    Stefansson, K.
    Ulfarsson, M. O.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [14] Self-Knowledge Distillation with Progressive Refinement of Targets
    Kim, Kyungyul
    Ji, ByeongMoon
    Yoon, Doyoung
    Hwang, Sangheum
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6547 - 6556
  • [15] Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults
    Marcus, Daniel S.
    Fotenos, Anthony F.
    Csernansky, John G.
    Morris, John C.
    Buckner, Randy L.
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 2010, 22 (12) : 2677 - 2684
  • [16] Mouches P, 2021, PR MACH LEARN RES, V143, P497
  • [17] Muller R., 2019, arXiv
  • [18] Accurate brain age prediction with lightweight deep neural networks
    Peng, Han
    Gong, Weikang
    Beckmann, Christian F.
    Vedaldi, Andrea
    Smith, Stephen M.
    [J]. MEDICAL IMAGE ANALYSIS, 2021, 68
  • [19] Ageing and Parkinson's disease: Why is advancing age the biggest risk factor?
    Reeve, Amy
    Simcox, Eve
    Turnbull, Doug
    [J]. AGEING RESEARCH REVIEWS, 2014, 14 : 19 - 30
  • [20] Evaluating the Impact of Intensity Normalization on MR Image Synthesis
    Reinhold, Jacob C.
    Dewey, Blake E.
    Carass, Aaron
    Prince, Jerry L.
    [J]. MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949