Optimization and Tradeoff Analysis for Multiple Configurations of Bio-Energy with Carbon Capture and Storage Systems in Brazilian Sugarcane Ethanol Sector

被引:1
作者
Bunya, Bruno [1 ]
Sotomonte, Cesar A. R. [1 ,2 ]
Julio, Alisson Aparecido Vitoriano [1 ,3 ]
Pereira, Joao Luiz Junho [4 ]
de Souza, Tulio Augusto Zucareli [1 ]
Francisco, Matheus Brendon [1 ]
Coronado, Christian J. R. [1 ]
机构
[1] Fed Univ Itajuba UNIFEI, Mech Engn Inst IEM, BR-37500903 Itajuba, Brazil
[2] Fed Univ Latin Amer Integrat, Chem Engn Inst, UNILA, BR-85870650 Foz Do Iguacu, Brazil
[3] Aalborg Univ, Dept Planning, Rendsburggade 14, DK-9000 Aalborg, Denmark
[4] Aeronaut Inst Technol, Comp Sci Div, ITA, BR-12228900 Sao Jose Dos Campos, Brazil
关键词
bio-energy; BECCS; multi-objective optimization; sugarcane bagasse; POSTCOMBUSTION CO2 CAPTURE; PILOT-PLANT; ELECTRICITY PRODUCTION; CANE BAGASSE; PERFORMANCE; MEA; EMISSIONS; TECHNOLOGIES; BECCS;
D O I
10.3390/e26080698
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bio-energy systems with carbon capture and storage (BECCS) will be essential if countries are to meet the gas emission reduction targets established in the 2015 Paris Agreement. This study seeks to carry out a thermodynamic optimization and analysis of a BECCS technology for a typical Brazilian cogeneration plant. To maximize generated net electrical energy (MWe) and carbon dioxide CO2 capture (Mt/year), this study evaluated six cogeneration systems integrated with a chemical absorption process using MEA. A key performance indicator (gCO(2)/kWh) was also evaluated. The set of optimal solutions shows that the single regenerator configuration (REG1) resulted in more CO2 capture (51.9% of all CO(2)emissions generated by the plant), penalized by 14.9% in the electrical plant's efficiency. On the other hand, the reheated configuration with three regenerators (Reheat3) was less power-penalized (7.41%) but had a lower CO2 capture rate (36.3%). Results showed that if the CO2 capture rates would be higher than 51.9%, the cogeneration system would reach a higher specific emission (gCO(2)/kWh) than the cogeneration base plant without a carbon capture system, which implies that low capture rates (<51%) in the CCS system guarantee an overall net reduction in greenhouse gas emissions in sugarcane plants for power and ethanol production.
引用
收藏
页数:21
相关论文
共 48 条
[1]   Performance evaluation of PACT Pilot-plant for CO2 capture from gas turbines with Exhaust Gas Recycle [J].
Akram, M. ;
Ali, U. ;
Best, T. ;
Blakey, S. ;
Finney, K. N. ;
Pourkashanian, M. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2016, 47 :137-150
[2]   Surplus electricity production in sugarcane mills using residual bagasse and straw as fuel [J].
Alves, Moises ;
Ponce, Gustavo H. S. F. ;
Silva, Maria Aparecida ;
Ensinas, Adriano V. .
ENERGY, 2015, 91 :751-757
[3]  
[Anonymous], 2020, Energy Technology Perspectives 2020-Special Report on Carbon Capture Utilisation and Storage, DOI [DOI 10.1787/208B66F4-EN, 10.1787/d07136f0-en, DOI 10.1787/D07136F0-EN]
[4]   Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets [J].
Bhave, Amit ;
Taylor, Richard H. S. ;
Fennell, Paul ;
Livingston, William R. ;
Shah, Nilay ;
Mac Dowell, Niall ;
Dennis, John ;
Kraft, Markus ;
Pourkashanian, Mohammed ;
Insa, Mathieu ;
Jones, Jenny ;
Burdett, Nigel ;
Bauen, Ausilio ;
Beal, Corinne ;
Smallbone, Andrew ;
Akroyd, Jethro .
APPLIED ENERGY, 2017, 190 :481-489
[5]   Capture technologies: Improvements and Promising Developments [J].
Blomen, Eliane ;
Hendriks, Chris ;
Neele, Filip .
GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01) :1505-1512
[6]   Novel non-aqueous MEA solutions for CO2 capture [J].
Bougie, Francis ;
Pokras, Daniel ;
Fan, Xianfeng .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2019, 86 :34-42
[7]   Bioenergy and full carbon dioxide sinking in sugarcane-biorefinery with post-combustion capture and storage: Techno-economic feasibility [J].
Carminati, Hudson Bolsoni ;
Milao, Raquel de Freitas D. ;
de Medeiros, Jose Luiz ;
Araujo, Ofelia de Queiroz F. .
APPLIED ENERGY, 2019, 254
[8]   Post-combustion carbon capture [J].
Chao, Cong ;
Deng, Yimin ;
Dewil, Raf ;
Baeyens, Jan ;
Fan, Xianfeng .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 138
[9]   Dynamic Data Reconciliation and Model Validation of a MEA-Based CO2 Capture System using Pilot Plant Data [J].
Chinen, Anderson S. ;
Morgan, Joshua C. ;
Omell, Benjamin P. ;
Bhattacharyya, Debangsu ;
Miller, David C. .
IFAC PAPERSONLINE, 2016, 49 (07) :639-644
[10]   Greenhouse gas emission implications of small-scale sugarcane farmers' trash management practices: A case for bioenergy production in South Africa [J].
Chipfupa, Unity ;
Tagwi, Aluwani .
ENERGY NEXUS, 2024, 15