Mechanically Reconfigurable Polarization Converter for Terahertz Waves

被引:1
作者
Quader, Sakib [1 ]
Ako, Rajour Tanyi [2 ,3 ]
Sriram, Sharath [2 ,3 ]
Fumeaux, Christophe [4 ]
Withayachumnankul, Withawat [1 ]
机构
[1] Univ Adelaide, Terahertz Engn Lab, Adelaide, SA 5005, Australia
[2] RMIT Univ, Funct Mat & Microsyst Res Grp, Melbourne, Vic 3001, Australia
[3] RMIT Univ, ARC Ctr Excellence Metaopt Syst, Melbourne, Vic 3001, Australia
[4] Univ Queensland, Sch Elect Engn & Comp Sci, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Metasurfaces; Optical retarders; Resonators; Performance evaluation; Integrated circuit modeling; Equivalent circuits; Terahertz communications; Circuit model; half-wave plate; metasurface; polarization converter; quarter-wave plate; terahertz; METAMATERIAL; TRANSMISSION; CONVERSION; SUBSTRATE;
D O I
10.1109/TTHZ.2024.3387654
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In terahertz systems, polarization conversion is usually carried out using conventional waveplates. However, limitations in these waveplates arise from inadequate material accessibility, relatively narrow bandwidth, low efficiency, and bulkiness. To overcome these limitations, a transmissive terahertz metasurface with mechanically reconfigurable polarization conversion is proposed. The separation between two identical metasurface plates is varied to switch between quarter-wave plate and half-wave plate functionalities. Measurement results verify that with no separation, the device can perform as a quarter-wave plate providing better than 3-dB axial ratio and an efficiency of over 75% from 246 to 320 GHz. With a separation of 150 mu m between the two units, the transmission output becomes a cross-polarized wave with a 18-dB extinction ratio and an efficiency of over 74% across the same band. Altogether, the proposed polarization conversion device provides the advantage of reconfigurability and can be simply installed into existing terahertz systems to achieve multiple functionalities.
引用
收藏
页码:502 / 509
页数:8
相关论文
共 40 条
[1]   Dielectrics for Terahertz Metasurfaces: Material Selection and Fabrication Techniques [J].
Ako, Rajour Tanyi ;
Upadhyay, Aditi ;
Withayachumnankul, Withawat ;
Bhaskaran, Madhu ;
Sriram, Sharath .
ADVANCED OPTICAL MATERIALS, 2020, 8 (03)
[2]   Broadband and wide-angle reflective linear polarization converter for terahertz waves [J].
Ako, Rajour Tanyi ;
Lee, Wendy S. L. ;
Bhaskaran, Madhu ;
Sriram, Sharath ;
Withayachumnankul, Withawat .
APL PHOTONICS, 2019, 4 (09)
[3]   Recent Progress in Terahertz Metasurfaces [J].
Al-Naib, Ibraheem ;
Withayachumnankul, Withawat .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2017, 38 (09) :1067-1084
[4]   Broadband Linear-to-Circular Polarization Conversion Enabled by Birefringent Off-Resonance Reflective Metasurfaces [J].
Chang, Chun-Chieh ;
Zhao, Zhexin ;
Li, Dongfang ;
Taylor, Antoinette J. ;
Fan, Shanhui ;
Chen, Hou-Tong .
PHYSICAL REVIEW LETTERS, 2019, 123 (23)
[5]   Active terahertz metamaterial devices [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Zide, Joshua M. O. ;
Gossard, Arthur C. ;
Taylor, Antoinette J. ;
Averitt, Richard D. .
NATURE, 2006, 444 (7119) :597-600
[6]  
Chen J.-D., 2023, Opt. Commun., V530
[7]   Terahertz achromatic quarter wave plate: Design, fabrication, and characterization [J].
Chen, Zaichun ;
Gong, Yandong ;
Dong, Hui ;
Notake, Takashi ;
Minamide, Hiroaki .
OPTICS COMMUNICATIONS, 2014, 311 :1-5
[8]   Ultrabroadband reflective polarization convertor for terahertz waves [J].
Cheng, Yong Zhi ;
Withayachumnankul, Withawat ;
Upadhyay, Aditi ;
Headland, Daniel ;
Nie, Yan ;
Gong, Rong Zhou ;
Bhaskaran, Madhu ;
Sriram, Sharath ;
Abbott, Derek .
APPLIED PHYSICS LETTERS, 2014, 105 (18)
[9]   Ultra-Broadband Linear Polarization Conversion via Diode-Like Asymmetric Transmission with Composite Metamaterial for Terahertz Waves [J].
Cheng, Yongzhi ;
Gong, Rongzhou ;
Wu, Lin .
PLASMONICS, 2017, 12 (04) :1113-1120
[10]   Highly flexible broadband terahertz metamaterial quarter-wave plate [J].
Cong, Longqing ;
Xu, Ningning ;
Gu, Jianqiang ;
Singh, Ranjan ;
Han, Jiaguang ;
Zhang, Weili .
LASER & PHOTONICS REVIEWS, 2014, 8 (04) :626-632