Unconditional superconvergence analysis of two-grid nonconforming FEMs for the fourth order nonlinear extend Fisher-Kolmogorov equation

被引:0
作者
Pei, Lifang [1 ]
Zhang, Chaofeng [1 ]
Shi, Dongyang [2 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Extended Fisher-Kolmogorov equation; Nonconforming FEM; TGM; Superconvergence; FINITE-ELEMENT METHODS; APPROXIMATIONS; DIFFUSION;
D O I
10.1016/j.amc.2024.128602
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an efficient nonconforming finite element method (FEM) is developed for solving the fourth order nonlinear extended Fisher-Kolmogorov equation. We firstly construct a backward Euler fully discrete scheme with a non-0 nonconforming double set parameter rectangular Morley element, and prove that this scheme is uniquely solvable and preserves the discrete energy dissipation law. Then based on some a priori bounds of the discrete solution, the superclose estimate in energy norm is obtained unconditionally, and the global superconvergence result is deduced with the help of the interpolated postprocessing technique. Moreover, a two-grid method (TGM) is presented, which can maintain the superconvergence result and save about half of the computing cost. Finally, numerical results are provided to show that the proposed two-grid nonconforming FEMs have a good performance. Here we mention that the above analysis is also valid for the Crank-Nicolson fully discrete scheme.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] VORTEX-FRONT PROPAGATION IN ROTATING COUETTE-TAYLOR FLOW
    AHLERS, G
    CANNELL, DS
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (20) : 1583 - 1586
  • [2] MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS
    ARONSON, DG
    WEINBERGER, HF
    [J]. ADVANCES IN MATHEMATICS, 1978, 30 (01) : 33 - 76
  • [3] NUMERICAL-ANALYSIS OF A FEM FOR A TRANSIENT VISCOELASTIC FLOW
    BARANGER, J
    WARDI, S
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 125 (1-4) : 171 - 185
  • [4] Chen C., 1995, HIGH ACCURACY THEORY
  • [5] CHEN SC, 1991, MATH NUMER SIN, V3, P286
  • [6] An anisotropic, superconvergent nonconforming plate finite element
    Chen, Shaochun
    Yin, Li
    Mao, Shipeng
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) : 96 - 110
  • [7] Chen SC, 2010, INT J NUMER ANAL MOD, V7, P766
  • [8] Two-grid methods of finite element solutions for semi-linear elliptic interface problems
    Chen, Yanping
    Li, Qingfeng
    Wang, Yang
    Huang, Yunqing
    [J]. NUMERICAL ALGORITHMS, 2020, 84 (01) : 307 - 330
  • [9] Ciarlet Ph. G., 1978, The Finite Element Method for Elliptic Problems
  • [10] NATURE OF SPATIAL CHAOS
    COULLET, P
    ELPHICK, C
    REPAUX, D
    [J]. PHYSICAL REVIEW LETTERS, 1987, 58 (05) : 431 - 434