Breaking and resurgence of symmetry in the non-Hermitian Su-Schrieffer-Heeger model in photonic waveguides

被引:10
作者
Slootman, E. [1 ,2 ]
Cherifi, W. [3 ]
Eek, L. [1 ]
Arouca, R. [4 ]
Bergholtz, E. J. [3 ]
Bourennane, M. [3 ]
Smith, C. Morais [1 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, Princetonplein 5, NL-3584CC Utrecht, Netherlands
[2] Univ Twente, MESA Inst Nanotechnol, Adapt Quantum Opt AQO, POB 217, NL-7500 AE Enschede, Netherlands
[3] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden
[4] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 02期
基金
瑞典研究理事会;
关键词
SOLITONS; STATES;
D O I
10.1103/PhysRevResearch.6.023140
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Symmetry is one of the cornerstones of modern physics and has profound implications in different areas. In symmetry-protected topological systems, symmetries are responsible for protecting surface states, which are at the heart of the fascinating properties exhibited by these materials. When the symmetry protecting the edge mode is broken, the topological phase becomes trivial. By engineering losses that break the symmetry protecting a topological Hermitian phase, we show that a new genuinely non-Hermitian symmetry emerges, which protects and selects one of the boundary modes: the topological monomode. Moreover, the topology of the non-Hermitian system can be characterized by an effective Hermitian Hamiltonian in a higher dimension. To corroborate the theory, we experimentally investigated the non-Hermitian one- and two-dimensional SSH models using photonic lattices and observed dynamically generated monomodes in both cases. We classify the systems in terms of the (non-Hermitian) symmetries that are present and calculate the corresponding topological invariants.
引用
收藏
页数:23
相关论文
共 50 条
[11]   Topological invariants in dissipative extensions of the Su-Schrieffer-Heeger model [J].
Dangel, Felix ;
Wagner, Marcel ;
Cartarius, Holger ;
Main, Joerg ;
Wunner, Gunter .
PHYSICAL REVIEW A, 2018, 98 (01)
[12]   Majorana zero modes and topological quantum computation [J].
Das Sarma, Sankar ;
Freedman, Michael ;
Nayak, Chetan .
NPJ QUANTUM INFORMATION, 2015, 1
[13]   Corner states of light in photonic waveguides [J].
El Hassan, Ashraf ;
Kunst, Flore K. ;
Moritz, Alexander ;
Andler, Guillermo ;
Bergholtz, Emil J. ;
Bourennane, Mohamed .
NATURE PHOTONICS, 2019, 13 (10) :697-+
[14]   Edge states and topological phases in non-Hermitian systems [J].
Esaki, Kenta ;
Sato, Masatoshi ;
Hasebe, Kazuki ;
Kohmoto, Mahito .
PHYSICAL REVIEW B, 2011, 84 (20)
[15]   Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial [J].
Ghatak, Ananya ;
Brandenbourger, Martin ;
van Wezel, Jasper ;
Coulais, Corentin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (47) :29561-29568
[16]   Floquet generation of a second-order topological superconductor [J].
Ghosh, Arnob Kumar ;
Nag, Tanay ;
Saha, Arijit .
PHYSICAL REVIEW B, 2021, 103 (04)
[17]   Topological Phases of Non-Hermitian Systems [J].
Gong, Zongping ;
Ashida, Yuto ;
Kawabata, Kohei ;
Takasan, Kazuaki ;
Higashikawa, Sho ;
Ueda, Masahito .
PHYSICAL REVIEW X, 2018, 8 (03)
[18]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067
[19]   Topological insulator: Spintronics and quantum computations [J].
He, Mengyun ;
Sun, Huimin ;
He, Qing Lin .
FRONTIERS OF PHYSICS, 2019, 14 (04)
[20]   Edge-Selective Extremal Damping from Topological Heritage of Dissipative Chern Insulators [J].
Hegde, Suraj S. ;
Ehmcke, Toni ;
Meng, Tobias .
PHYSICAL REVIEW LETTERS, 2023, 131 (25)