Irradiance separation model parameter estimation from historical cloud cover statistical properties

被引:0
作者
Castillejo-Cuberos, A. [1 ]
Cardemil, J. M. [1 ,2 ]
Boland, J. [3 ]
Escobar, R. [1 ,4 ]
机构
[1] Pontificia Univ Catolica Chile, Escuela Ingn, Vicuna Mackenna 4860, Santiago 7820436, Chile
[2] Ctr Energia UC, Vicuna Mackenna 4860, Santiago, Chile
[3] Univ South Australia, UniSA STEM, Mawson Lakes Campus, Adelaide, SA 5095, Australia
[4] Pontificia Univ Catolica Chile, Ctr Desierto Atacama, Vicuna Mackenna 4860, Santiago 7820436, Chile
关键词
Diffuse fraction; Separation model; Solar irradiance; Climate; HOURLY DIFFUSE FRACTION; SOLAR-RADIATION; GLOBAL IRRADIANCE; PERFORMANCE; RESOLUTION; SURFACE;
D O I
10.1016/j.rser.2024.114785
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Irradiance separation models allow the decomposition of Global Horizontal Irradiance into Diffuse Horizontal and Direct Normal Irradiances. These models need fitting to the irradiance characteristics of the location of interest using locally measured ground data. For locations that only measure Global Horizontal Irradiance, current state of the art establishes the use of parameters obtained for another location that measures the three components, with similar climate characteristics. Nevertheless, this results in a lack of localized character for estimates and requires fitting model parameters for all possible climates, which can be infeasible given data availability. This work presents a novel approach based on the hypothesis that the separation model's parameters are a function of the statistical properties of satellite-derived cloud cover estimates. The proposed methodology was evaluated in 23 sites covering all main Ko<spacing diaeresis>ppen-Geiger climatic types and different cloud coverage properties using the Boland-Ridley-Lauret diffuse fraction model. The model performs similarly as locally adjusting the model, with Root Mean Square Errors of 0.087-0.15 diffuse fraction units versus 0.077-0.127 for locally optimized parameters, and offers adequate performance across climates and cloud characteristics. These results encourage future research by generalizing parameter estimation for other diffuse fraction models. The main applications for this research are the estimation of irradiance components where no local data is available for model fitting and the enhancement or complementarity of satellite estimates of surface irradiance. Furthermore, it allows the estimation of missing irradiance components due to equipment failure in locations with insufficient data for a representative, locally adapted model.
引用
收藏
页数:16
相关论文
共 33 条
  • [1] Performance of empirical models for diffuse fraction in Uruguay
    Abal, G.
    Aicardi, D.
    Suarez, R. Alonso
    Laguarda, A.
    [J]. SOLAR ENERGY, 2017, 141 : 166 - 181
  • [2] Prediction of diffuse horizontal irradiance using a new climate zone model
    Abreu, Edgar F. M.
    Canhoto, Paulo
    Costa, Maria Joao
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 110 : 28 - 42
  • [3] [Anonymous], 2016, C REC IEEE PHOT SPEC, DOI DOI 10.1109/PVSC-VOL2.2014.7588249
  • [4] [Anonymous], 2019, NASA Earth Observations [WWW Document]
  • [5] Present and future Koppen-Geiger climate classification maps at 1-km resolution
    Beck, Hylke E.
    Zimmermann, Niklaus E.
    McVicar, Tim R.
    Vergopolan, Noemi
    Berg, Alexis
    Wood, Eric F.
    [J]. SCIENTIFIC DATA, 2018, 5
  • [6] Decomposing global solar radiation into its direct and diffuse components
    Boland, John
    Huang, Jing
    Ridley, Barbara
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 28 : 749 - 756
  • [7] Engerer2: Global re-parameterisation, update, and validation of an irradiance separation model at different temporal resolutions
    Bright, Jamie M.
    Engerer, Nicholas A.
    [J]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2019, 11 (03)
  • [8] Detection and characterization of cloud enhancement events for solar irradiance using a model-independent, statistically-driven approach
    Castillejo-Cuberos, Armando
    Escobar, Rodrigo
    [J]. SOLAR ENERGY, 2020, 209 (209) : 547 - 567
  • [9] Understanding solar resource variability: An in-depth analysis, using Chile as a case of study
    Castillejo-Cuberos, Armando
    Escobar, Rodrigo
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 120
  • [10] Baseline Surface Radiation Network (BSRN): structure and data description (1992-2017)
    Driemel, Amelie
    Augustine, John
    Behrens, Klaus
    Colle, Sergio
    Cox, Christopher
    Cuevas-Agullo, Emilio
    Denn, Fred M.
    Duprat, Thierry
    Fukuda, Masato
    Grobe, Hannes
    Haeffelin, Martial
    Hodges, Gary
    Hyett, Nicole
    Ijima, Osamu
    Kallis, Ain
    Knap, Wouter
    Kustov, Vasilii
    Long, Charles N.
    Longenecker, David
    Lupi, Angelo
    Maturilli, Marion
    Mimouni, Mohamed
    Ntsangwane, Lucky
    Ogihara, Hiroyuki
    Olano, Xabier
    Olefs, Marc
    Omori, Masao
    Passamani, Lance
    Pereira, Enio Bueno
    Schmithuesen, Holger
    Schumacher, Stefanie
    Sieger, Rainer
    Tamlyn, Jonathan
    Vogt, Roland
    Vuilleumier, Laurent
    Xia, Xiangao
    Ohmura, Atsumu
    Koenig-Langlo, Gert
    [J]. EARTH SYSTEM SCIENCE DATA, 2018, 10 (03) : 1491 - 1501