Freiheitssatz for amalgamated products of free groups over maximal cyclic subgroups

被引:0
作者
Feldkamp, Carsten [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Dusseldorf, Germany
关键词
Freiheitssatz; Amalgamated products; Free groups; Maximal cyclic subgroups; Embedding theorems; EQUATIONS;
D O I
10.1016/j.jalgebra.2024.02.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1930, Wilhelm Magnus introduced the so-called Freiheitssatz: Let F be a free group with basis X and let r be a cyclically reduced element of F which contains a basis element x E X , then every non -trivial element of the normal closure of r in F contains the basis element x . Equivalently, the subgroup freely generated by X \{ x } embeds canonically into the quotient group F /x x r y y F . In this article, we want to introduce a Freiheitssatz for amalgamated products G = A * U B of free groups A and B , where U is a maximal cyclic subgroup in A and B : If an element r of G is neither conjugate to an element of A nor B , then the factors A , B embed canonically into G /x x r y y G . (c) 2024 Published by Elsevier Inc.
引用
收藏
页码:444 / 470
页数:27
相关论文
共 17 条
[1]  
Brodskii S. D., 1980, Uspekhi Mat. Nauk, V35, P183
[2]   EQUATIONS OVER GROUPS, AND GROUPS WITH ONE DEFINING RELATION [J].
BRODSKII, SD .
SIBERIAN MATHEMATICAL JOURNAL, 1984, 25 (02) :235-251
[3]   Limit groups as limits of free groups [J].
Champetier, C ;
Guirardel, V .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 146 (1) :1-75
[4]   POWERS AS PRODUCTS OF COMMUTATORS [J].
COMERFORD, JA ;
COMERFORD, LP ;
EDMUNDS, CC .
COMMUNICATIONS IN ALGEBRA, 1991, 19 (02) :675-684
[5]  
Edjvet Martin, 2020, On Singular Equations over Torsion-Free Groups
[6]  
Feldkamp Carsten, 2020, Magnus-Eigenschaft und Freiheitssatze fur Gruppen
[7]   On surface subgroups of doubles of free groups [J].
Gordon, Cameron ;
Wilton, Henry .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 82 :17-31
[8]   ON LOCALLY INDICABLE GROUPS [J].
HOWIE, J .
MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (04) :445-461
[9]  
HOWIE J, 1981, J REINE ANGEW MATH, V324, P165
[10]   Magnus subgroups of one-relator surface groups [J].
Howie, James ;
Saeed, Muhammad Sarwar .
JOURNAL OF ALGEBRA, 2010, 323 (07) :1860-1871