MnO2 superstructure cathode with boosted zinc ion intercalation for aqueous zinc ion batteries

被引:14
作者
Zhang, Aina [1 ]
Zhang, Xu [1 ]
Zhao, Hainan [1 ,2 ]
Ehrenberg, Helmut [2 ]
Chen, Gang [1 ]
Saadoune, Ismael [3 ]
Fu, Qiang [2 ]
Wei, Yingjin [1 ]
Wang, Yizhan [1 ]
机构
[1] Jilin Univ, Coll Phys, Key Lab Phys & Technol Adv Batteries, Minist Educ, Changchun 130012, Peoples R China
[2] Karlsruhe Inst Technol, Inst Appl Mat, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Mohammed VI Polytech Univ UM6P, Lot 660 Hay Moulay Rachid, Benguerir 43150, Morocco
基金
中国国家自然科学基金;
关键词
Aqueous zinc ion batteries; MnO2; Superstructure; In operando synchrotron diffraction; X-ray absorption spectroscopy; PERFORMANCE; ALPHA-MNO2; NANOSHEETS; MECHANISM; STORAGE; OXIDE; H+;
D O I
10.1016/j.jcis.2024.05.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The simultaneous intercalation of protons and Zn2+ ions in aqueous electrolytes presents a significant obstacle to the widespread adoption of aqueous zinc ion batteries (AZIBs) for large-scale use, a challenge that has yet to be overcome. To address this, we have developed a MnO2/tetramethylammonium (TMA) superstructure with an enlarged interlayer spacing, designed specifically to control H+/Zn2+ co-intercalation in AZIBs. Within this superstructure, the pre-intercalated TMA+ ions work as spacers to stabilize the layered structure of MnO2 cathodes and expand the interlayer spacing substantially by 28 % to 0.92 nm. Evidence from in operando pH measurements, in operando synchrotron X-ray diffraction, and X-ray absorption spectroscopy shows that the enlarged interlayer spacing facilitates the diffusion and intercalation of Zn2+ ions (which have a large ionic radius) into the MnO2 cathodes. This spacing also helps suppress the competing H+ intercalation and the formation of detrimental Zn4(OH)6SO4 & sdot;5H2O, thereby enhancing the structural stability of MnO2. As a result, enhanced Zn2+ storage properties, including excellent capacity and long cycle stability, are achieved.
引用
收藏
页码:723 / 730
页数:8
相关论文
共 48 条
[1]   Scientific Challenges for the Implementation of Zn-Ion Batteries [J].
Blanc, Lauren E. ;
Kundu, Dipan ;
Nazar, Linda F. .
JOULE, 2020, 4 (04) :771-799
[2]   Atomic Engineering Catalyzed MnO2 Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density [J].
Chao, Dongliang ;
Ye, Chao ;
Xie, Fangxi ;
Zhou, Wanhai ;
Zhang, Qinghua ;
Gu, Qinfen ;
Davey, Kenneth ;
Gu, Lin ;
Qiao, Shi-Zhang .
ADVANCED MATERIALS, 2020, 32 (25)
[3]   PEDOT-intercalated MnO2 layers as a high-performance cathode material for aqueous Zn-ion batteries [J].
Chen, Hao ;
Ma, Weibing ;
Guo, Jingdong ;
Xiong, Jiyuan ;
Hou, Feng ;
Si, Wenping ;
Sang, Zhiyuan ;
Yang, De'an .
JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 932
[4]   Reunderstanding the Reaction Mechanism of Aqueous Zn-Mn Batteries with Sulfate Electrolytes: Role of the Zinc Sulfate Hydroxide [J].
Chen, Hao ;
Dai, Chunlong ;
Xiao, Fangyuan ;
Yang, Qiuju ;
Cai, Shinan ;
Xu, Maowen ;
Fan, Hong Jin ;
Bao, Shu-Juan .
ADVANCED MATERIALS, 2022, 34 (15)
[5]   The charge density of intercalants inside layered birnessite manganese oxide nanosheets determining Zn-ion storage capability towards rechargeable Zn-ion batteries [J].
Chomkhuntod, Praeploy ;
Hantanasirisakul, Kanit ;
Duangdangchote, Salatan ;
Phattharasupakun, Nutthaphon ;
Sawangphruk, Montree .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (10) :5561-5568
[6]   Synthesis of Nitrogen-Doped KMn8O16 with Oxygen Vacancy for Stable Zinc-Ion Batteries [J].
Cui, Guodong ;
Zeng, Yinxiang ;
Wu, Jinfang ;
Guo, Yan ;
Gu, Xiaojun ;
Lou, Xiong Wen .
ADVANCED SCIENCE, 2022, 9 (10)
[7]   Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged High-Energy-Density and Durable Aqueous Zinc-Ion Battery [J].
Fang, Guozhao ;
Zhu, Chuyu ;
Chen, Minghui ;
Zhou, Jiang ;
Tang, Boya ;
Cao, Xinxin ;
Zheng, Xusheng ;
Pan, Anqiang ;
Liang, Shuquan .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (15)
[8]   The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets [J].
Gao, Peng ;
Metz, Peter ;
Hey, Trevyn ;
Gong, Yuxuan ;
Liu, Dawei ;
Edwards, Doreen D. ;
Howe, Jane Y. ;
Huang, Rong ;
Misture, Scott T. .
NATURE COMMUNICATIONS, 2017, 8
[9]   High-Energy and Stable Subfreezing Aqueous Zn-MnO2 Batteries with Selective and Pseudocapacitive Zn-Ion Insertion in MnO2 [J].
Gao, Siyuan ;
Li, Bomin ;
Tan, Haiyan ;
Xia, Fan ;
Dahunsi, Olusola ;
Xu, Wenqian ;
Liu, Yuzi ;
Wang, Rongyue ;
Cheng, Yingwen .
ADVANCED MATERIALS, 2022, 34 (21)
[10]   Mechanism of Zn Insertion into Nanostructured δ-MnO2: A Nonaqueous Rechargeable Zn Metal Battery [J].
Han, Sang-Don ;
Kim, Soojeong ;
Li, Dongguo ;
Petkov, Valeri ;
Yoo, Hyun Deog ;
Phillips, Patrick J. ;
Wang, Hao ;
Kim, Jae Jin ;
More, Karren L. ;
Key, Baris ;
Klie, Robert F. ;
Cabana, Jordi ;
Stamenkovic, Vojislav R. ;
Fister, Timothy T. ;
Markovic, Nenad M. ;
Burrell, Anthony K. ;
Tepavcevic, Sanja ;
Vaughey, John T. .
CHEMISTRY OF MATERIALS, 2017, 29 (11) :4874-4884