On a Generalization of Symmetric Edge Polytopes to Regular Matroids

被引:2
作者
D'Ali, Alessio [1 ,2 ]
Juhnke-Kubitzke, Martina [2 ]
Koch, Melissa [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Osnabruck, Dept Math, D-49076 Osnabruck, Germany
[3] Univ Osnabruck, Dept Comp Sci, D-49090 Osnabruck, Germany
关键词
D O I
10.1093/imrn/rnae107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from any finite simple graph, one can build a reflexive polytope known as a symmetric edge polytope. The first goal of this paper is to show that symmetric edge polytopes are intrinsically matroidal objects: more precisely, we prove that two symmetric edge polytopes are unimodularly equivalent precisely when they share the same graphical matroid. The second goal is to show that one can construct a generalized symmetric edge polytope starting from every regular matroid. Just like in the usual case, we are able to find combinatorial ways to describe the facets and an explicit regular unimodular triangulation of any such polytope. Finally, we show that the Ehrhart theory of the polar of a given generalized symmetric edge polytope is tightly linked to the structure of the lattice of flows of the dual regular matroid.
引用
收藏
页码:10844 / 10864
页数:21
相关论文
共 34 条
[1]   A COLORFUL HOCHSTER FORMULA AND UNIVERSAL PARAMETERS FOR FACE RINGS [J].
Adams, Ashleigh ;
Reiner, Victor .
JOURNAL OF COMMUTATIVE ALGEBRA, 2023, 15 (02) :151-176
[2]   Hodge theory for combinatorial geometries [J].
Adiprasito, Karim ;
Huh, June ;
Katz, Eric .
ANNALS OF MATHEMATICS, 2018, 188 (02) :381-452
[3]   The number of nowhere-zero flows on graphs and signed graphs [J].
Beck, Matthias ;
Zaslavsky, Thomas .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (06) :901-918
[4]  
Braun B, 2023, J INTEGER SEQ, V26
[5]   Wasserstein distance to independence models [J].
Celik, Turku Ozluem ;
Jamneshan, Asgar ;
Montufar, Guido ;
Sturmfels, Bernd ;
Venturello, Lorenzo .
JOURNAL OF SYMBOLIC COMPUTATION, 2021, 104 :855-873
[6]  
Chen Justin, 2019, J. Softw. Algebra Geom., V9, P19
[7]   Facets and facet subgraphs of symmetric edge polytopes [J].
Chen, Tianran ;
Davis, Robert ;
Korchevskaia, Evgeniia .
DISCRETE APPLIED MATHEMATICS, 2023, 328 :139-153
[8]   Counting Equilibria of the Kuramoto Model Using Birationally Invariant Intersection Index [J].
Chen, Tianran ;
Davis, Robert ;
Mehta, Dhagash .
SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2018, 2 (04) :489-507
[9]  
Cox D., 2015, Undergraduate Texts in Mathematics, Vfourth
[10]   On the gamma-vector of symmetric edge polytopes [J].
D'ali, Alessio ;
Juhnke-Kubitzke, Martina ;
Koehne, Daniel ;
Venturello, Lorenzo .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) :487-515