High-Frequency and High-Linearity Lithium Niobate Electro-optic Modulator

被引:5
作者
Xu, Haochen [1 ]
Pan, Bingcheng [1 ]
Wang, Siyuan [1 ]
Liu, Hongxuan [1 ]
Xie, Yiwei [1 ,2 ,3 ,4 ]
Yu, Zejie [1 ,2 ,3 ,4 ]
Dai, Daoxin [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 311215, Peoples R China
[3] Jiaxing Key Lab Photon Sensing & Intelligent Imagi, Jiaxing 314000, Peoples R China
[4] Zhejiang Univ, Jiaxing Res Inst, Intelligent Opt & Photon Res Ctr, Jiaxing 314000, Peoples R China
来源
ACS PHOTONICS | 2024年 / 11卷 / 08期
基金
中国国家自然科学基金;
关键词
lithium niobate; modulator; FP cavity; high linearity; high frequency; SILICON; GENERATION; PHOTONICS; BANDWIDTH;
D O I
10.1021/acsphotonics.4c00622
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thin-film lithium niobate has attracted extensive attention for microwave photonics because of its properties of large electro-optical coefficients, low optical loss, and excellent scalability. However, the linearity of electro-optic modulators especially in high-frequency regions becomes one of the bottlenecks for developing large-dynamic-range microwave photonics applications. Here, we propose and demonstrate a high-frequency and high-linearity electro-optic modulator based on a Fabry-Perot cavity-assisted Mach-Zehnder interferometer. The Fabry-Perot cavity consisting of asymmetric Bragg gratings works like a microring cavity but has large modulation efficiency because of avoiding bent waveguides. Spurious-free dynamic ranges of similar to 118.47, 108.75, and 97.92 dB<middle dot>Hz(4/5) are experimentally measured under modulation signals of 1, 10, and 20 GHz, respectively. Compared with a conventional Mach-Zehnder interferometer electro-optic modulator, improvements of nearly 20, 17, and 10 dB at modulation frequencies of 1, 10, and 20 GHz are realized, respectively. Therefore, the demonstrated high-frequency and high-linearity electro-optic modulation will find many microwave photonics applications such as filters, beam forming, and optoelectronic oscillations.
引用
收藏
页码:3232 / 3238
页数:7
相关论文
共 27 条
[1]   A tutorial on microwave photonic filters [J].
Capmany, J ;
Ortega, B ;
Pastor, D .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (01) :201-229
[2]   Microwave photonics combines two worlds [J].
Capmany, Jose ;
Novak, Dalma .
NATURE PHOTONICS, 2007, 1 (06) :319-330
[3]   Ultra-high-linearity integrated lithium niobate electro-optic modulators [J].
Feng, Hanke ;
Zhang, Ke ;
Sun, Wenzhao ;
Ren, Yangming ;
Zhang, Yiwen ;
Zhang, Wenfu ;
Wang, Cheng .
PHOTONICS RESEARCH, 2022, 10 (10) :2366-2373
[4]   High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond [J].
He, Mingbo ;
Xu, Mengyue ;
Ren, Yuxuan ;
Jian, Jian ;
Ruan, Ziliang ;
Xu, Yongsheng ;
Gao, Shengqian ;
Sun, Shihao ;
Wen, Xueqin ;
Zhou, Lidan ;
Liu, Lin ;
Guo, Changjian ;
Chen, Hui ;
Yu, Siyuan ;
Liu, Liu ;
Cai, Xinlun .
NATURE PHOTONICS, 2019, 13 (05) :359-+
[5]   Noise figure reduction in externally modulated analog fiber-optic links [J].
Karim, Adil ;
Devenport, Jason .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19 (5-8) :312-314
[6]   Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper [J].
Khan, Maroof H. ;
Shen, Hao ;
Xuan, Yi ;
Zhao, Lin ;
Xiao, Shijun ;
Leaird, Daniel E. ;
Weiner, Andrew M. ;
Qi, Minghao .
NATURE PHOTONICS, 2010, 4 (02) :117-U30
[7]   Integrated microwave photonics [J].
Marpaung, David ;
Yao, Jianping ;
Capmany, Jose .
NATURE PHOTONICS, 2019, 13 (02) :80-90
[8]   Photonic signal processing of microwave signals [J].
Minasian, RA .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (02) :832-846
[9]   Ultra-compact lithium niobate microcavity electro-optic modulator beyond 110 GHz [J].
Pan, Bing-Cheng ;
Liu, Hong-Xuan ;
Xu, Hao-Chen ;
Huang, Yi-Shu ;
Li, Huan ;
Yu, Ze-Jie ;
Liu, Liu ;
Shi, Yao-Cheng ;
Dai, Dao-Xin .
CHIP, 2022, 1 (04)
[10]   Compact electro-optic modulator on lithium niobate [J].
Pan, Bingcheng ;
Cao, Hongyuan ;
Huang, Yishu ;
Wang, Zong ;
Chen, Kaixuan ;
Li, Huan ;
Yu, Zejie ;
Dai, Daoxin .
PHOTONICS RESEARCH, 2022, 10 (03) :697-702