共 32 条
[Ag(IPr)(bpy)][PF6]: brightness and darkness playing with aggregation induced phosphorescence for light-emitting electrochemical cells
被引:4
|作者:
Giobbio, Ginevra
[1
,2
]
Coto, Pedro B.
[3
,4
]
Lohier, Jean-Francois
[1
]
Renaud, Jean-Luc
[1
,5
]
Gaillard, Sylvain
[1
]
Costa, Ruben D.
[2
]
机构:
[1] UNICAEN, Normandy Univ, CNRS, ENSICAEN,LCMT, Caen, France
[2] Tech Univ Munich, Chair Biogenic Funct Mat, Campus Straubing Biotechnol & Sustainabil, Schulgasse 22, D-94315 Straubing, Germany
[3] CSIC, Donostia San Sebastian 20018, Spain
[4] Donostia Int Phys Ctr DIPC, Mat Phys Ctr CFM, Donostia San Sebastian 20018, Spain
[5] Sorbonne Univ, Inst Parisien Chim Mol, CNRS, UMR 8232, F-75005 Paris, France
关键词:
D O I:
10.1039/d4dt01056f
中图分类号:
O61 [无机化学];
学科分类号:
070301 ;
081704 ;
摘要:
Heteroleptic silver(i) complexes have recently started to attract attention in thin-film lighting technologies as an alternative to copper(i) analogues due to the lack of flattening distortion upon excitation. However, the interpretation of their photophysical behavior is challenging going from traditional fluorescence/phosphorescence to a temperature-dependent dual emission mechanism and ligand-lock assisted thermally activated delayed fluorescence. Herein, we unveil the photoluminescence behavior of a three-coordinated Ag(i) complex with the N-heterocyclic carbene (NHC) ligand and 2,2 '-bipyridine (bpy) as the N<^>N ligand. In contrast to its low-emissive Cu(i) complex structural analogues, a strong greenish emission was attributed to the presence of aggregates formed by pi-pi intermolecular interactions as revealed by the X-ray structure and aggregation induced emission (AIE) studies in solution. In addition, the temperature-dependent time-resolved spectroscopic and computational studies demonstrated that the emission mechanism is related to a phosphorescence emission mechanism of two very close lying (Delta E = 0.08 eV) excited triplet states, exhibiting a similar delocalized nature over the bipyridine ligands. Unfortunately, this favourable AIE is lost upon forming homogeneous thin films suitable for lighting devices. Though the films showed very poor emission, the electrochemical stability under device operation conditions is remarkable compared to the prior-art, highlighting the potential of [Ag(NHC)(N<^>N)][X] complexes in thin-film lighting.
引用
收藏
页码:12307 / 12315
页数:9
相关论文