Experimental analysis of a photovoltaic thermal collector using phase change materials and copper oxide nanofluid

被引:10
|
作者
Almeshaal, Mohammed A. [1 ]
Altohamy, Ahmed A. [2 ,3 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Coll Engn, Dept Mech Engn, Riyadh 11432, Saudi Arabia
[2] Northern Border Univ, Coll Engn, Dept Mech Engn, Ar Ar 91431, Saudi Arabia
[3] Benha Univ, Shoubra Fac Engn, Mech Engn Dept, Combust & Energy Technol Lab, Cairo 11672, Egypt
关键词
PVT system; Photovoltaic cell; Phase change material; Nanofluid; CuO nanofluid; Encapsulation; RT35; PERFORMANCE; SYSTEM;
D O I
10.1016/j.est.2024.112265
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study seeks to maximize the benefits of solar cell systems by increasing electrical energy in addition to thermal storage for home heating via a photovoltaic thermal (PVT) system. RT35 paraffin wax (PCM) and water are used as heat storage media, with nanofluids serving as the working fluid. The impact of nanofluids (CuOwater) on the electrical and thermal performance of the PVT/encapsulated PCM balls system was studied experimentally. First, water PVT and PCM/PVT collectors are tested at pure water flow rates of 0.5, 1, and 1.5 l/ min. The effect of adding CuO nanoparticles to water with a different weight concentration of 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 % on the performance of the nanofluid PCM/PVT system at a constant flow rate of 1.5 l/min was then investigated. The results demonstrated the CuO nanofluid PCM/PVT collectors superior cooling effectiveness when compared to water PVT and PVT/PCM systems, with best performance achieved at a CuO concentration of 0.3 % by weight and a flow rate of 1.5 l/min. At best performance, the nanofluid-PVT/PCM system can achieve an overall energy conversion efficiency of 82.1 %, as the solar cell surface temperature decreases on average by 8.7 % and 3.6 %, while electrical efficiency improves on average by 37.7 % and 13.3 % when compared to uncooled PV and pure water PCM/PVT collectors, respectively.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide - water nanofluid
    Michael, Jee Joe
    Iniyan, S.
    SOLAR ENERGY, 2015, 119 : 439 - 451
  • [2] Application of Copper Oxide Nanofluid and Phase Change Material on the Performance of Hybrid Photovoltaic-Thermal (PVT) System
    Tiwari, Awaneendra Kumar
    Chatterjee, Kalyan
    Deolia, Vinay Kumar
    PROCESSES, 2023, 11 (06)
  • [3] Enhancing photovoltaic thermal (PVT) performance with hybrid solar collector using phase change material, porous media, and nanofluid
    Mahdi, Zainab M.
    Al-Shamani, Ali N.
    Al-Manea, Ahmed
    Al-zurfi, Hazim A.
    Al-Rbaihat, Raed
    Sopian, K.
    Alahmer, Ali
    SOLAR ENERGY, 2024, 283
  • [4] Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant
    Jia, Yuting
    Ran, Fengming
    Zhu, Chuqiao
    Fang, Guiyin
    SOLAR ENERGY, 2020, 196 : 625 - 636
  • [5] Experimental analysis of a photovoltaic/thermoelectric generator using cobalt oxide nanofluid and phase change material heat sink
    Rajaee, Fatemeh
    Rad, Mohammad Amin Vaziri
    Kasaeian, Alibakhsh
    Mahian, Omid
    Yan, Wei-Mon
    ENERGY CONVERSION AND MANAGEMENT, 2020, 212
  • [6] Experimental study of using both ZnO/water nanofluid and phase change material (PCM) in photovoltaic thermal systems
    Sardarabadi, Mohammad
    Passandideh-Fard, Mohammad
    Maghrebi, Mohammad-Javad
    Ghazikhani, Mohsen
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 161 : 62 - 69
  • [7] Experimental evaluation of a photovoltaic thermal collector using twisted tape absorber with nano-enhanced phase change material for thermal storage
    Al-Karboly, Abdalrahman M. O.
    Ibrahim, Adnan
    Fazlizan, Ahmad
    Sopian, Kamaruzzaman
    Al-Aasam, Anwer B.
    Ishak, Muhammad Amir Aziat Bin
    Al-Waeli, Ali H. A.
    Elmnifi, Monaem
    JOURNAL OF ENERGY STORAGE, 2025, 109
  • [8] Thermal modeling and experimental validation of semitransparent photovoltaic- thermal hybrid collector using CuO nanofluid
    Jidhesh, P.
    Arjunan, T. V.
    Gunasekar, N.
    JOURNAL OF CLEANER PRODUCTION, 2021, 316
  • [9] Maximizing the energy output of a photovoltaic-thermal solar collector incorporating phase change materials
    Su, Di
    Jia, Yuting
    Lin, Yaxue
    Fang, Guiyin
    ENERGY AND BUILDINGS, 2017, 153 : 382 - 391
  • [10] Experimental analysis for the photovoltaic thermal collector (PVT) with nano PCM and micro-fins tube nanofluid
    Bassam, Abdulsahib M.
    Sopian, Kamaruzzaman
    Ibrahim, Adnan
    Fauzan, Mohd Faizal
    Al-Aasam, Anwer B.
    Abusaibaa, Ghaith Yahay
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 41