Multi-Method and Multi-Atlas Segmentation Fusion for Delineation of Thigh Muscle Groups in 3D Water-Fat Separated MRI

被引:0
作者
Annasamudram, Nagasoujanya V. [1 ]
Okorie, Azubuike M. [1 ]
Spencer, Richard G. [2 ]
Kalyani, Rita R. [3 ]
Yang, Qi [4 ]
Landman, Bennett A. [5 ]
Ferrucci, Luigi [2 ]
Makrogiannis, Sokratis [1 ]
机构
[1] Delaware State Univ, Div Phys Engn Math & Comp Sci, Dover, DE 19901 USA
[2] NIA, NIH, Baltimore, MD USA
[3] Johns Hopkins Univ, Sch Med, Div Endocrinol Diabet & Metab, Baltimore, MD USA
[4] Vanderbilt Univ, Dept Comp Sci, Nashville, TN USA
[5] Vanderbilt Univ, Dept Elect & Comp Engn, Nashville, TN USA
来源
MEDICAL IMAGING 2024: IMAGE PROCESSING | 2024年 / 12926卷
基金
美国国家卫生研究院;
关键词
REGISTRATION;
D O I
10.1117/12.3006894
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Segmentation is an essential tool for quantification and characterization of tissue properties, with applications ranging from assessment of body composition, disease diagnosis, to development of imaging biomarkers. In this work, we propose a multi-method and multi-atlas methodology for automated segmentation of functional muscle groups in 3D Dixon MR images of the mid-thigh. The functional muscle groups addressed in this paper lie anatomically close to each other, that makes segmentation an arduous task for accuracy. We propose an approach that uses anatomical mappings enabling delineation of adjacent muscle groups that are difficult to separate using conventional intensity-based patterns only. We segment the four functional muscle groups of the thigh in both legs by multi-atlas anatomical mappings and fuse the labels to improve delineation accuracy. We investigate the fusion of segmentation from multiple atlases and multiple deformable registration methods. For performance evaluation we applied cross-validation by excluding the scans that served as templates in our framework and report DSC values on the remaining test scans. We evaluated four individual deformable models, free-form deformation (FFD), symmetric normalization (SYN), symmetric diffeomorphic demons (SDD), and Voxelmorph (VXM), and the joint multi-method fusion. Multi-atlas and multi-method fusion produced the top average DSC of 0.795 over all muscles on the test scans.
引用
收藏
页数:6
相关论文
共 12 条
[1]  
Avants BB., 2009, Insight J, V2, P1, DOI DOI 10.54294/UVNHIN
[2]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[3]   Semi-automated segmentation of magnetic resonance images for thigh skeletal muscle and fat using threshold technique after spinal cord injury [J].
Ghatas, Mina P. ;
Lester, Robert M. ;
Khan, M. Rehan ;
Gorgey, Ashraf S. .
NEURAL REGENERATION RESEARCH, 2018, 13 (10) :1787-1795
[4]   Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases [J].
Kalyani, Rita Rastogi ;
Corriere, Mark ;
Ferrucci, Luigi .
LANCET DIABETES & ENDOCRINOLOGY, 2014, 2 (10) :819-829
[5]   The Impact of Glucose-Lowering Drugs on Sarcopenia in Type 2 Diabetes: Current Evidence and Underlying Mechanisms [J].
Massimino, Elena ;
Izzo, Anna ;
Riccardi, Gabriele ;
Della Pepa, Giuseppe .
CELLS, 2021, 10 (08)
[6]   Differential effects of calorie restriction and rapamycin on age-related molecular and functional changes in skeletal muscle [J].
Orenduff, Melissa C. ;
Coleman, Michael F. ;
Glenny, Elaine M. ;
Huffman, Kim M. ;
Rezeli, Erika T. ;
Bareja, Akshay ;
Pieper, Carl F. ;
Kraus, Virginia B. ;
Hursting, Stephen D. .
EXPERIMENTAL GERONTOLOGY, 2022, 165
[7]   Global versus individual muscle segmentation to assess quantitative MRI-based fat fraction changes in neuromuscular diseases [J].
Reyngoudt, Harmen ;
Marty, Benjamin ;
Boisserie, Jean-Marc ;
Le Louer, Julien ;
Koumako, Cedi ;
Baudin, Pierre-Yves ;
Wong, Brenda ;
Stojkovic, Tanya ;
Behin, Anthony ;
Gidaro, Teresa ;
Allenbach, Yves ;
Benveniste, Olivier ;
Servais, Laurent ;
Carlier, Pierre G. .
EUROPEAN RADIOLOGY, 2021, 31 (06) :4264-4276
[8]   Nonrigid registration using free-form deformations: Application to breast MR images [J].
Rueckert, D ;
Sonoda, LI ;
Hayes, C ;
Hill, DLG ;
Leach, MO ;
Hawkes, DJ .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (08) :712-721
[9]   Thigh muscle segmentation of chemical shift encoding-based water-fat magnetic resonance images: The reference database MyoSegmenTUM [J].
Schlaeger, Sarah ;
Freitag, Friedemann ;
Klupp, Elisabeth ;
Dieckmeyer, Michael ;
Weidlich, Dominik ;
Inhuber, Stephanie ;
Deschauer, Marcus ;
Schoser, Benedikt ;
Bublitz, Sarah ;
Montagnese, Federica ;
Zimmer, Claus ;
Rummeny, Ernst J. ;
Karampinos, Dimitrios C. ;
Kirschke, Jan S. ;
Baum, Thomas .
PLOS ONE, 2018, 13 (06)
[10]  
Vercauteren T, 2008, LECT NOTES COMPUT SC, V5241, P754, DOI 10.1007/978-3-540-85988-8_90