CTIF-Net: A CNN-Transformer Iterative Fusion Network for Salient Object Detection

被引:15
|
作者
Yuan, Junbin [1 ]
Zhu, Aiqing [1 ]
Xu, Qingzhen [1 ]
Wattanachote, Kanoksak [2 ]
Gong, Yongyi [2 ]
机构
[1] South China Normal Univ, Sch Comp Sci, Guangzhou 510631, Peoples R China
[2] Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Intelligent Hlth & Visual Comp Lab, Guangzhou 510006, Peoples R China
关键词
CNN; transformer; iterative fusion; salient object detection; ATTENTION; MODEL;
D O I
10.1109/TCSVT.2023.3321190
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Capturing sufficient global context and rich spatial structure information is critical for dense prediction tasks. Convolutional Neural Network (CNN) is particularly adept at modeling fine-grained local features, while Transformer excels at modeling global context information. It is evident that CNN and Transformer exhibit complementary characteristics. Exploring the design of a network, that efficiently fuses these two models to leverage their strengths fully and achieve more accurate detection, represents a promising and worthwhile research topic. In this paper, we introduce a novel CNN-Transformer Iterative Fusion Network (CTIF-Net) for salient object detection. It efficiently combines CNN and Transformer to achieve superior performance by using a parallel dual encoder structure and a feature iterative fusion module. Firstly, CTIF-Net extracts features from the image using the CNN and the Transformer, respectively. Secondly, two feature convertors and a feature iterative fusion module are employed to combine and iteratively refine the two sets of features. The experimental results on multiple SOD datasets show that CTIF-Net outperforms 17 state-of-the-art methods, achieving higher performance in various mainstream evaluation metrics such as F-measure, S-measure, and MAE value. Code can be found at https://github.com/danielfaster/CTIF-Net/.
引用
收藏
页码:3795 / 3805
页数:11
相关论文
共 50 条
  • [41] MFC-Net : Multi-feature fusion cross neural network for salient object detection
    Wang, Zhenyu
    Zhang, Yunzhou
    Liu, Yan
    Liu, Shichang
    Coleman, Sonya
    Kerr, Dermot
    IMAGE AND VISION COMPUTING, 2021, 113
  • [42] An efficient speech emotion recognition based on a dual-stream CNN-transformer fusion network
    Tellai M.
    Gao L.
    Mao Q.
    International Journal of Speech Technology, 2023, 26 (02) : 541 - 557
  • [43] Cross Complementary Fusion Network for Video Salient Object Detection
    Wang, Ziyang
    Li, Junxia
    Pan, Zefeng
    IEEE ACCESS, 2020, 8 : 201259 - 201270
  • [44] A CNN-transformer hybrid network with selective fusion and dual attention for image super-resolution
    Zhang, Chun
    Wang, Jin
    Shi, Yunhui
    Yin, Baocai
    Ling, Nam
    MULTIMEDIA SYSTEMS, 2025, 31 (02)
  • [45] Uncertainty-guided Siamese Transformer Network for salient object detection
    Han, Pengfei
    Huang, Ju
    Yang, Jian
    Li, Xuelong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 272
  • [46] LFNet: Light Field Fusion Network for Salient Object Detection
    Zhang, Miao
    Ji, Wei
    Piao, Yongri
    Li, Jingjing
    Zhang, Yu
    Xu, Shuang
    Lu, Huchuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 6276 - 6287
  • [47] View-independent gait events detection using CNN-transformer hybrid network
    Jamsrandorj, Ankhzaya
    Jung, Dawoon
    Kumar, Konki Sravan
    Arshad, Muhammad Zeeshan
    Lim, Hwasup
    Kim, Jinwook
    Mun, Kyung-Ryoul
    JOURNAL OF BIOMEDICAL INFORMATICS, 2023, 147
  • [48] ASNet: Adaptive Semantic Network Based on Transformer-CNN for Salient Object Detection in Optical Remote Sensing Images
    Yan, Ruixiang
    Yan, Longquan
    Geng, Guohua
    Cao, Yufei
    Zhou, Pengbo
    Meng, Yongle
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [49] ConvTransNet: A CNN-Transformer Network for Change Detection With Multiscale Global-Local Representations
    Li, Weiming
    Xue, Lihui
    Wang, Xueqian
    Li, Gang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [50] PS-Net: Progressive Selection Network for Salient Object Detection
    Jianyi Ren
    Zheng Wang
    Jinchang Ren
    Cognitive Computation, 2022, 14 : 794 - 804