3D-Bioprinted Gelatin Methacryloyl-Strontium-Doped Hydroxyapatite Composite Hydrogels Scaffolds for Bone Tissue Regeneration

被引:5
作者
Codrea, Cosmin Iulian [1 ,2 ]
Baykara, Dilruba [3 ,4 ]
Mitran, Raul-Augustin [2 ]
Koyuncu, Ayse Ceren Calikoglu [3 ,4 ]
Gunduz, Oguzhan [3 ,4 ]
Ficai, Anton [1 ,5 ,6 ,7 ]
机构
[1] Natl Univ Sci & Technol Politehn Bucharest, Fac Chem Engn & Biotechnol, Bucharest 060042, Romania
[2] Romanian Acad, Inst Phys Chem Ilie Murgulescu, Bucharest 060021, Romania
[3] Marmara Univ, Ctr Nanotechnol & Biomat Applicat & Res NBUAM, TR-34722 Istanbul, Turkiye
[4] Marmara Univ, Fac Technol, Dept Met & Mat Engn, TR-34722 Istanbul, Turkiye
[5] Natl Univ Sci & Technol POLITEHN Bucharest, Fac Chem Engn & Biotechnol, Natl Res Ctr Micro & Nanomat, Bucharest 060042, Romania
[6] Natl Univ Sci & Technol POLITEHN Bucharest, Natl Ctr Food Safety, Bucharest 060042, Romania
[7] Acad Romanian Scientists, Ilfov St 3, Bucharest 050045, Romania
关键词
hydroxyapatite; precipitation; hydrothermal; strontium; gelatin methacryloyl; 3D-printing; digital light processing; bioactivity;
D O I
10.3390/polym16131932
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
New gelatin methacryloyl (GelMA)-strontium-doped nanosize hydroxyapatite (SrHA) composite hydrogel scaffolds were developed using UV photo-crosslinking and 3D printing for bone tissue regeneration, with the controlled delivery capacity of strontium (Sr). While Sr is an effective anti-osteoporotic agent with both anti-resorptive and anabolic properties, it has several important side effects when systemic administration is applied. Multi-layer composite scaffolds for bone tissue regeneration were developed based on the digital light processing (DLP) 3D printing technique through the photopolymerization of GelMA. The chemical, morphological, and biocompatibility properties of these scaffolds were investigated. The composite gels were shown to be suitable for 3D printing. In vitro cell culture showed that osteoblasts can adhere and proliferate on the surface of the hydrogel, indicating that the GelMA-SrHA hydrogel has good cell viability and biocompatibility. The GelMA-SrHA composites are promising 3D-printed scaffolds for bone repair.
引用
收藏
页数:16
相关论文
共 50 条
[41]   Novel 3D Bioglass Scaffolds for Bone Tissue Regeneration [J].
Daskalakis, Evangelos ;
Huang, Boyang ;
Vyas, Cian ;
Acar, Anil Ahmet ;
Fallah, Ali ;
Cooper, Glen ;
Weightman, Andrew ;
Koc, Bahattin ;
Blunn, Gordon ;
Bartolo, Paulo .
POLYMERS, 2022, 14 (03)
[42]   Fabrication and characterization of 3D-printed composite scaffolds of coral-derived hydroxyapatite nanoparticles/polycaprolactone/gelatin carrying doxorubicin for bone tissue engineering [J].
Kadi, Fatima ;
Dini, Ghasem ;
Poursamar, S. Ali ;
Ejeian, Fatemeh .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2024, 35 (01)
[43]   3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering [J].
Zhenyu Xu ;
Ke Li ;
Kui Zhou ;
Shuiyuan Li ;
Hongwei Chen ;
Jiaqi Zeng ;
Rugang Hu .
Fibers and Polymers, 2023, 24 :275-283
[44]   3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering [J].
Xu, Zhenyu ;
Li, Ke ;
Zhou, Kui ;
Li, Shuiyuan ;
Chen, Hongwei ;
Zeng, Jiaqi ;
Hu, Rugang .
FIBERS AND POLYMERS, 2023, 24 (01) :275-283
[45]   3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering [J].
Iglesias-Mejuto, Ana ;
Garcia-Gonzalez, Carlos A. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 131
[46]   Biomimetic and osteogenic 3D silk fibroin composite scaffolds with nano MgO and mineralized hydroxyapatite for bone regeneration [J].
Wu, Ziquan ;
Meng, Zhulong ;
Wu, Qianjin ;
Zeng, Delu ;
Guo, Zhengdong ;
Yao, Jiangling ;
Bian, Yangyang ;
Gu, Yuntao ;
Cheng, Shaowen ;
Peng, Lei ;
Zhao, Yingzheng .
JOURNAL OF TISSUE ENGINEERING, 2020, 11
[47]   Perfusion conditioning of hydroxyapatite-chitosan-gelatin scaffolds for bone tissue regeneration from human mesenchymal stem cells [J].
Sellgren, Katelyn L. ;
Ma, Teng .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 (01) :49-59
[48]   Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing [J].
Barbara Leukers ;
Hülya Gülkan ;
Stephan H. Irsen ;
Stefan Milz ;
Carsten Tille ;
Matthias Schieker ;
Hermann Seitz .
Journal of Materials Science: Materials in Medicine, 2005, 16 :1121-1124
[49]   Synthesis of Hydroxyapatite Scaffolds via 3D-Printing and Sintering for Bone Regeneration [J].
Soh, Ryan Zhe Hse ;
Cheah, Kean How ;
Wong, Voon Loong ;
Lim, Siew Shee .
PROCEEDINGS OF THE ANNUAL CONGRESS OF THE ASIA-PACIFIC SOCIETY FOR ARTIFICIAL ORGANS, APSAO 2023, 2024, :301-309
[50]   Composite Hydrogels of Alkyl Functionalized Gellan Gum Derivative and Hydroxyapatite/Tricalcium Phosphate Nanoparticles as Injectable Scaffolds for bone Regeneration [J].
Pitarresi, Giovanna ;
Palumbo, Fabio Salvatore ;
Fiorica, Calogero ;
Bongiovi, Flavia ;
Martorana, Annalisa ;
Federico, Salvatore ;
Chinnici, Cinzia Maria ;
Giammona, Gaetano .
MACROMOLECULAR BIOSCIENCE, 2022, 22 (02)