3D-Bioprinted Gelatin Methacryloyl-Strontium-Doped Hydroxyapatite Composite Hydrogels Scaffolds for Bone Tissue Regeneration

被引:4
作者
Codrea, Cosmin Iulian [1 ,2 ]
Baykara, Dilruba [3 ,4 ]
Mitran, Raul-Augustin [2 ]
Koyuncu, Ayse Ceren Calikoglu [3 ,4 ]
Gunduz, Oguzhan [3 ,4 ]
Ficai, Anton [1 ,5 ,6 ,7 ]
机构
[1] Natl Univ Sci & Technol Politehn Bucharest, Fac Chem Engn & Biotechnol, Bucharest 060042, Romania
[2] Romanian Acad, Inst Phys Chem Ilie Murgulescu, Bucharest 060021, Romania
[3] Marmara Univ, Ctr Nanotechnol & Biomat Applicat & Res NBUAM, TR-34722 Istanbul, Turkiye
[4] Marmara Univ, Fac Technol, Dept Met & Mat Engn, TR-34722 Istanbul, Turkiye
[5] Natl Univ Sci & Technol POLITEHN Bucharest, Fac Chem Engn & Biotechnol, Natl Res Ctr Micro & Nanomat, Bucharest 060042, Romania
[6] Natl Univ Sci & Technol POLITEHN Bucharest, Natl Ctr Food Safety, Bucharest 060042, Romania
[7] Acad Romanian Scientists, Ilfov St 3, Bucharest 050045, Romania
关键词
hydroxyapatite; precipitation; hydrothermal; strontium; gelatin methacryloyl; 3D-printing; digital light processing; bioactivity;
D O I
10.3390/polym16131932
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
New gelatin methacryloyl (GelMA)-strontium-doped nanosize hydroxyapatite (SrHA) composite hydrogel scaffolds were developed using UV photo-crosslinking and 3D printing for bone tissue regeneration, with the controlled delivery capacity of strontium (Sr). While Sr is an effective anti-osteoporotic agent with both anti-resorptive and anabolic properties, it has several important side effects when systemic administration is applied. Multi-layer composite scaffolds for bone tissue regeneration were developed based on the digital light processing (DLP) 3D printing technique through the photopolymerization of GelMA. The chemical, morphological, and biocompatibility properties of these scaffolds were investigated. The composite gels were shown to be suitable for 3D printing. In vitro cell culture showed that osteoblasts can adhere and proliferate on the surface of the hydrogel, indicating that the GelMA-SrHA hydrogel has good cell viability and biocompatibility. The GelMA-SrHA composites are promising 3D-printed scaffolds for bone repair.
引用
收藏
页数:16
相关论文
共 50 条
[31]   Preparation, structural and mechanical characterization of porous hydroxyapatite-gelatin composite scaffolds for bone tissue engineering [J].
Narbat, Mehdi Kazemzadeh .
PROCEEDINGS OF THE FIFTH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, 2007, :452-457
[32]   3D-printed tri-element-doped hydroxyapatite/ polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration [J].
Huang, Hao ;
Qiang, Lei ;
Fan, Minjie ;
Liu, Yihao ;
Yang, Anchun ;
Chang, Dongbiao ;
Li, Jinsheng ;
Sun, Tong ;
Wang, Yiwei ;
Guo, Ruoyi ;
Zhuang, Hanjie ;
Li, Xiangyu ;
Guo, Tailin ;
Wang, Jinwu ;
Tan, Huan ;
Zheng, Pengfei ;
Weng, Jie .
BIOACTIVE MATERIALS, 2024, 31 :18-37
[33]   Sintering of magnesium-strontium doped hydroxyapatite nanocrystals: Towards the production of 3D biomimetic bone scaffolds [J].
Scalera, Francesca ;
Palazzo, Barbara ;
Barca, Amilcare ;
Gervaso, Francesca .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2020, 108 (03) :633-644
[34]   Development of a biomimetic arch-like 3D bioprinted construct for cartilage regeneration using gelatin methacryloyl and silk fibroin-gelatin bioinks [J].
Chakraborty, Juhi ;
Fernandez-Perez, Julia ;
van Kampen, Kenny A. ;
Roy, Subhadeep ;
ten Brink, Tim ;
Mota, Carlos ;
Ghosh, Sourabh ;
Moroni, Lorenzo .
BIOFABRICATION, 2023, 15 (03)
[35]   3D-printed cryomilled poly(ε-caprolactone)/graphene composite scaffolds for bone tissue regeneration [J].
Dias, Daniela ;
Vale, Ana C. ;
Cunha, Eunice P. F. ;
C. Paiva, Maria ;
Reis, Rui L. ;
Vaquette, Cedryck ;
Alves, Natalia M. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2021, 109 (07) :961-972
[36]   Developing Bioengineered 3D-Printed Composite Scaffolds with Antimicrobial Potential for Bone Tissue Regeneration [J].
Trifan, Andreea ;
Liciu, Eduard ;
Busuioc, Cristina ;
Stancu, Izabela-Cristina ;
Banciu, Adela ;
Nicolae, Carmen ;
Dragomir, Mihai ;
Cristea, Doru-Daniel ;
Sabau, Rosina-Elena ;
Niulescu, David-Andrei ;
Paraschiv, Alexandru .
JOURNAL OF FUNCTIONAL BIOMATERIALS, 2025, 16 (06)
[37]   3D printing of strontium-enriched biphasic calcium phosphate scaffolds for bone regeneration [J].
Oliveira, Rodrigo L. M. S. ;
Ferraz, Marcos C. ;
Cardoso, Lais Medeiros ;
Li, Zhongrui ;
Albers, Ana Paula F. ;
Bottino, Marco C. ;
Triches, Eliandra S. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2024, 160
[38]   In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration [J].
Boga, Joao C. ;
Miguel, Sonia P. ;
de Melo-Diogo, Duarte ;
Mendonca, Antonio G. ;
Louro, Ricardo O. ;
Correia, Ilidio J. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 165 :207-218
[39]   Novel 3D Bioglass Scaffolds for Bone Tissue Regeneration [J].
Daskalakis, Evangelos ;
Huang, Boyang ;
Vyas, Cian ;
Acar, Anil Ahmet ;
Fallah, Ali ;
Cooper, Glen ;
Weightman, Andrew ;
Koc, Bahattin ;
Blunn, Gordon ;
Bartolo, Paulo .
POLYMERS, 2022, 14 (03)
[40]   Fabrication and characterization of 3D-printed composite scaffolds of coral-derived hydroxyapatite nanoparticles/polycaprolactone/gelatin carrying doxorubicin for bone tissue engineering [J].
Kadi, Fatima ;
Dini, Ghasem ;
Poursamar, S. Ali ;
Ejeian, Fatemeh .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2024, 35 (01)