3D-Bioprinted Gelatin Methacryloyl-Strontium-Doped Hydroxyapatite Composite Hydrogels Scaffolds for Bone Tissue Regeneration

被引:4
作者
Codrea, Cosmin Iulian [1 ,2 ]
Baykara, Dilruba [3 ,4 ]
Mitran, Raul-Augustin [2 ]
Koyuncu, Ayse Ceren Calikoglu [3 ,4 ]
Gunduz, Oguzhan [3 ,4 ]
Ficai, Anton [1 ,5 ,6 ,7 ]
机构
[1] Natl Univ Sci & Technol Politehn Bucharest, Fac Chem Engn & Biotechnol, Bucharest 060042, Romania
[2] Romanian Acad, Inst Phys Chem Ilie Murgulescu, Bucharest 060021, Romania
[3] Marmara Univ, Ctr Nanotechnol & Biomat Applicat & Res NBUAM, TR-34722 Istanbul, Turkiye
[4] Marmara Univ, Fac Technol, Dept Met & Mat Engn, TR-34722 Istanbul, Turkiye
[5] Natl Univ Sci & Technol POLITEHN Bucharest, Fac Chem Engn & Biotechnol, Natl Res Ctr Micro & Nanomat, Bucharest 060042, Romania
[6] Natl Univ Sci & Technol POLITEHN Bucharest, Natl Ctr Food Safety, Bucharest 060042, Romania
[7] Acad Romanian Scientists, Ilfov St 3, Bucharest 050045, Romania
关键词
hydroxyapatite; precipitation; hydrothermal; strontium; gelatin methacryloyl; 3D-printing; digital light processing; bioactivity;
D O I
10.3390/polym16131932
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
New gelatin methacryloyl (GelMA)-strontium-doped nanosize hydroxyapatite (SrHA) composite hydrogel scaffolds were developed using UV photo-crosslinking and 3D printing for bone tissue regeneration, with the controlled delivery capacity of strontium (Sr). While Sr is an effective anti-osteoporotic agent with both anti-resorptive and anabolic properties, it has several important side effects when systemic administration is applied. Multi-layer composite scaffolds for bone tissue regeneration were developed based on the digital light processing (DLP) 3D printing technique through the photopolymerization of GelMA. The chemical, morphological, and biocompatibility properties of these scaffolds were investigated. The composite gels were shown to be suitable for 3D printing. In vitro cell culture showed that osteoblasts can adhere and proliferate on the surface of the hydrogel, indicating that the GelMA-SrHA hydrogel has good cell viability and biocompatibility. The GelMA-SrHA composites are promising 3D-printed scaffolds for bone repair.
引用
收藏
页数:16
相关论文
共 50 条
[21]   3D Printed Polycaprolactone/Gelatin/Bacterial Cellulose/Hydroxyapatite Composite Scaffold for Bone Tissue Engineering [J].
Cakmak, Abdullah M. ;
Unal, Semra ;
Sahin, Ali ;
Oktar, Faik N. ;
Sengor, Mustafa ;
Ekren, Nazmi ;
Gunduz, Oguzhan ;
Kalaskar, Deepak M. .
POLYMERS, 2020, 12 (09) :1-14
[22]   3D printed gelatin/decellularized bone composite scaffolds for bone tissue engineering: Fabrication, characterization and cytocompatibility study [J].
Kara, Aylin ;
Distler, Thomas ;
Polley, Christian ;
Schneidereit, Dominik ;
Seitz, Hermann ;
Friedrich, Oliver ;
Tihminlioglu, Funda ;
Boccaccini, Aldo R. .
MATERIALS TODAY BIO, 2022, 15
[23]   3D bioprinted alginate-gelatin based scaffolds for soft tissue engineering [J].
Chawla, Dipul ;
Kaur, Tejinder ;
Joshi, Akshay ;
Singh, Neetu .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 144 (144) :560-567
[24]   3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration [J].
Wei, Jiawei ;
Yan, Yan ;
Gao, Jing ;
Li, Yubao ;
Wang, Ruili ;
Wang, Jiexin ;
Zou, Qin ;
Zuo, Yi ;
Zhu, Meifang ;
Li, Jidong .
BIOMATERIALS ADVANCES, 2022, 133
[25]   Development of 3D Printable Gelatin Methacryloyl/Chondroitin Sulfate/Hyaluronic Acid Hydrogels as Implantable Scaffolds [J].
Murphy, Caroline A. ;
Serafin, Aleksandra ;
Collins, Maurice N. .
POLYMERS, 2024, 16 (14)
[26]   Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering [J].
Lee, Chang-Min ;
Yang, Seong-Won ;
Jung, Sang-Chul ;
Kim, Byung-Hoon .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (04) :2747-2750
[27]   Immobilization of bone morphogenetic protein-2 to gelatin/avidin-modified hydroxyapatite composite scaffolds for bone regeneration [J].
Cheng, Cheng-Hsin ;
Lai, Yi-Hui ;
Chen, Yi-Wen ;
Yao, Chun-Hsu ;
Chen, Kuo-Yu .
JOURNAL OF BIOMATERIALS APPLICATIONS, 2019, 33 (09) :1147-1156
[28]   Fabrication and Characterization of 3D Nanostructured Polycaprolactone-Gelatin/Nanohydroxyapatite-Nanoclay Scaffolds for Bone Tissue Regeneration [J].
Nazari, Saba ;
Naeimi, Mitra ;
Rafienia, Mohammad ;
Monajjemi, Majid .
JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2024, 32 (01) :94-110
[29]   3D-Printed Gelatin Methacryloyl-Based Scaffolds with Potential Application in Tissue Engineering [J].
Leu Alexa, Rebeca ;
Iovu, Horia ;
Ghitman, Jana ;
Serafim, Andrada ;
Stavarache, Cristina ;
Marin, Maria-Minodora ;
Ianchis, Raluca .
POLYMERS, 2021, 13 (05) :1-17
[30]   3D Printed and Bioprinted Membranes and Scaffolds for the Periodontal Tissue Regeneration: A Narrative Review [J].
Sufaru, Irina-Georgeta ;
Macovei, Georgiana ;
Stoleriu, Simona ;
Martu, Maria-Alexandra ;
Luchian, Ionut ;
Kappenberg-Nitescu, Diana-Cristala ;
Solomon, Sorina Mihaela .
MEMBRANES, 2022, 12 (09)