A DIFFUSE INTERFACE APPROACH FOR VECTOR-VALUED PDES ON SURFACES

被引:0
作者
Nestler, Michael [1 ]
Voigt, Axel [1 ,2 ,3 ]
机构
[1] Tech Univ Dresden, Inst Sci Comp, Dresden, Germany
[2] Tech Univ Dresden, Ctr Syst Biol Dresden CSBD, Dresden, Germany
[3] Tech Univ Dresden, Cluster Excellence Phys Life PoL, Dresden, Germany
关键词
Surface PDEs; diffuse-interface approximation; finite-element approximation; FINITE-ELEMENT METHODS; 2-PHASE FLOWS; ORDER; APPROXIMATION; DISCRETIZATION; ADVECTION; EQUATIONS;
D O I
10.4310/CMS.2024.v22.n6.a13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Approximating PDEs on surfaces by the diffuse interface approach allows us to use standard numerical tools to solve these problems. This makes it an attractive numerical approach. We extend this approach to vector-valued surface PDEs and explore their convergence properties. In contrast to the well-studied case of scalar-valued surface PDEs, the optimal order of convergence can only be achieved if certain higher-order relations between mesh size and interface width are fulfilled. This difference results from the increased coupling between the surface geometry and the PDE for vector-valued quantities defined on it.
引用
收藏
页码:1749 / 1759
页数:11
相关论文
共 52 条
[1]  
Ahrens J, 2005, VISUALIZATION HDB, P717, DOI [10.1016/B978-012387582-2/50038-1, DOI 10.1016/B978-012387582-2/50038-1]
[2]   Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model [J].
Aland, Sebastian ;
Lowengrub, John ;
Voigt, Axel .
PHYSICAL REVIEW E, 2012, 86 (04)
[3]   BUCKLING INSTABILITY OF VIRAL CAPSIDS-A CONTINUUM APPROACH [J].
Aland, Sebastian ;
Raetz, Andreas ;
Roeger, Matthias ;
Voigt, Axel .
MULTISCALE MODELING & SIMULATION, 2012, 10 (01) :82-110
[4]   A continuum model of colloid-stabilized interfaces [J].
Aland, Sebastian ;
Lowengrub, John ;
Voigt, Axel .
PHYSICS OF FLUIDS, 2011, 23 (06)
[5]  
Ayachit U., 2015, PARAVIEW GUIDE PARAL
[6]   Diffusion of tangential tensor fields: numerical issues and influence of geometric properties [J].
Bachini, Elena ;
Brandner, Philip ;
Jankuhn, Thomas ;
Nestler, Michael ;
Praetorius, Simon ;
Reusken, Arnold ;
Voigt, Axel .
JOURNAL OF NUMERICAL MATHEMATICS, 2024, 32 (01) :55-75
[7]   The interplay of geometry and coarsening in multicomponent lipid vesicles under the influence of hydrodynamics [J].
Bachini, Elena ;
Krause, Veit ;
Voigt, Axel .
PHYSICS OF FLUIDS, 2023, 35 (04)
[8]  
Balay S., 2022, Tech. Rep. ANL- 21/39-Revision 3.17, P3
[9]   Finite-element discretization of static Hamilton-Jacobi equations based on a local variational principle [J].
Bornemann, Folkmar ;
Rasch, Christian .
COMPUTING AND VISUALIZATION IN SCIENCE, 2006, 9 (02) :57-69
[10]   FINITE ELEMENT DISCRETIZATION METHODS FOR VELOCITY-PRESSURE AND STREAM FUNCTION FORMULATIONS OF SURFACE STOKES EQUATIONS [J].
Brandner, Philip ;
Jankuhn, Thomas ;
Praetorius, Simon ;
Reusken, Arnold ;
Voigt, Axel .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04) :A1807-A1832