Binary ionic liquid electrolyte design for ultrahigh-energy density graphene-based supercapacitors

被引:23
|
作者
Wong, Shao Ing
Lin, Han [1 ]
Ma, Tianyi [1 ,2 ]
Sunarso, Jaka [3 ]
Wong, Basil T. [3 ]
Jia, Baohua [1 ,2 ]
机构
[1] Swinburne Univ Technol, Ctr Translat Atomaterials, Sch Sci Comp & Engn Technol, Hawthorn, Vic 3122, Australia
[2] RMIT Univ, Sch Sci, Melbourne, Vic 3000, Australia
[3] Swinburne Univ Technol, Fac Engn Comp & Sci, Res Ctr Sustainable Technol, Jalan Simpang Tiga, Kuching 93350, Sarawak, Malaysia
来源
MATERIALS REPORTS: ENERGY | 2022年 / 2卷 / 02期
关键词
Electrolyte; Binary ionic liquid; Maximum working voltage; High capacitance; High energy density; Supercapacitor; PERFORMANCE; BATTERIES; MIXTURES;
D O I
10.1016/j.matre.2022.100093
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although room temperature ionic liquids (ILs) have emerged as potential next-generation electrolytes for their wide electrochemical stability window (ESW), the trade-off between this window and viscosity has hindered their widespread use in energy storage devices. Here, we present for the first time that such a trade-off can be balanced by mixing two ILs with the common anion ([NTf2](-)) but different cations ([EMIM](+) and [N1114](+)) together. The [EMIM] cation-based IL possesses low viscosity while the [N1114] cation-based IL exhibits wide ESW. Since the concentrations of each IL in the mixtures can result in different electrolyte properties, we demonstrate a systematic approach by exploring the properties of various concentration combinations. In addition, the corresponding cell voltage of their resulting graphene supercapacitors (SCs) accompanied based on the interaction between the binary ionic liquid and the electrodes, and the associated electrochemical performance were studied to determine the optimum electrolyte system for the highest SC energy density. The well-balanced viscosity/ESW trade-off is achieved in binary IL consisting 50 vol% [EMIM][NTf2] and 50 vol% [N1114][NTf2] as evident from the extraordinary electrode specific capacitance of 293.1 F g(-1) and the ultrahigh SC energy density of 177 Wh kg(-1), which approaches that of a lithium-ion battery.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Enlarging energy density of supercapacitors using unequal graphene electrodes and ionic liquid electrolyte
    Li, Jing
    Tang, Jie
    Yuan, Jinshi
    Zhang, Kun
    Sun, Yige
    Zhang, Han
    Qin, Lu-Chang
    ELECTROCHIMICA ACTA, 2017, 258 : 1053 - 1058
  • [2] Ionic Liquid Electrolytes with Various Constituent Ions for Graphene-based Supercapacitors
    Huang, Po-Ling
    Luo, Xu-Feng
    Peng, You-Yu
    Pu, Nen-Wen
    Ger, Ming-Der
    Yang, Cheng-Hsien
    Wu, Tzi-Yi
    Chang, Jeng-Kuei
    ELECTROCHIMICA ACTA, 2015, 161 : 371 - 377
  • [3] Interactions between Graphene and Ionic Liquid Electrolyte in Supercapacitors
    Li, Jing
    Tang, Jie
    Yuan, Jinshi
    Zhang, Kun
    Shao, Qingguo
    Sun, Yige
    Qin, Lu-Chang
    ELECTROCHIMICA ACTA, 2016, 197 : 84 - 91
  • [4] Graphene-Based Supercapacitor with an Ultrahigh Energy Density
    Liu, Chenguang
    Yu, Zhenning
    Neff, David
    Zhamu, Aruna
    Jang, Bor Z.
    NANO LETTERS, 2010, 10 (12) : 4863 - 4868
  • [5] Binary ionic liquids hybrid electrolyte based supercapacitors with high energy & power density
    Bo, Zheng
    Zhang, Xu
    Huang, Zhesong
    Huang, Yuhui
    Yan, Jianhua
    Cen, Kefa
    Yang, Huachao
    RSC ADVANCES, 2023, 13 (23) : 15762 - 15771
  • [6] Enhancing energy density of graphene-based supercapacitors by redox Bisazo scaffolds
    Chu, Yuxiao
    Luo, Yang
    Zhang, Zilong
    Dong, Lei
    Xie, Yihui
    Zhang, Kai
    Zhao, Yanying
    Zhao, Fu-Gang
    JOURNAL OF ENERGY STORAGE, 2024, 104
  • [7] Tailoring moldy-mulberry-derived carbons for ionic liquid-based supercapacitors with ultrahigh energy density
    Huang, Zaimei
    Chen, Jiadong
    Chen, Heng
    Wan, Haiting
    Yang, Yutian
    Fan, Tieyan
    Zhang, Qingcheng
    Jin, Huile
    Wang, Jichang
    Wang, Shun
    DIAMOND AND RELATED MATERIALS, 2024, 144
  • [8] Supercapacitor based on graphene and ionic liquid electrolyte
    Fu, Chaopeng
    Kuang, Yafei
    Huang, Zhongyuan
    Wang, Xiao
    Yin, Yifan
    Chen, Jinhua
    Zhou, Haihui
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (11-12) : 2581 - 2585
  • [9] Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance
    Kai Leng
    Fan Zhang
    Long Zhang
    Tengfei Zhang
    Yingpeng Wu
    Yanhong Lu
    Yi Huang
    Yongsheng Chen
    Nano Research, 2013, 6 : 581 - 592
  • [10] Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance
    Leng, Kai
    Zhang, Fan
    Zhang, Long
    Zhang, Tengfei
    Wu, Yingpeng
    Lu, Yanhong
    Huang, Yi
    Chen, Yongsheng
    NANO RESEARCH, 2013, 6 (08) : 581 - 592