Construction of new fractional inequalities via generalized n-fractional polynomial s-type convexity

被引:1
作者
Ozcan, Serap [1 ]
Butt, Saad Ihsan [2 ]
Tipuric-Spuzevic, Sanja [3 ]
Bin Mohsin, Bandar [4 ]
机构
[1] Kirklareli Univ, Fac Sci & Arts, Dept Math, Kirklareli, Turkiye
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Islamabad, Pakistan
[3] Univ Split, Fac Chem & Technol, Rudera Boskovica 35, Split 21000, Croatia
[4] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 09期
关键词
convex function; n-fractional polynomial convex function; Hermite-Hadamard inequality; Ostrowski inequality; integral inequalities;
D O I
10.3934/math.20241163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on introducing and investigating the class of generalized n-fractional polynomial s-type convex functions within the framework of fractional calculus. Relationships between the novel class of functions and other kinds of convex functions are given. New integral inequalities of Hermite-Hadamard and Ostrowski-type are established for our novel generalized class of convex functions. Using some identities and fractional operators, new refinements of Ostrowskitype inequalities are presented for generalized n-fractional polynomial s-type convex functions. Some special cases of the newly obtained results are discussed. It has been presented that, under some certain conditions, the class of generalized n-fractional polynomial s-type convex functions reduces to a novel class of convex functions. It is interesting that, our results for particular cases recaptures the RiemannLiouville fractional integral inequalities and quadrature rules. By extending these particular types of inequalities, the objective is to unveil fresh mathematical perspectives, attributes, and connections that can enhance the evolution of more resilient mathematical methodologies. This study aids in the progression of mathematical instruments across diverse scientific fields.
引用
收藏
页码:23924 / 23944
页数:21
相关论文
共 36 条
[1]   Extended Riemann-Liouville fractional derivative operator and its applications [J].
Agarwal, Praveen ;
Choi, Junesang ;
Paris, R. B. .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05) :451-466
[2]   Fractional Integral Inequalities via Atangana-Baleanu Operators for Convex and Concave Functions [J].
Akdemir, Ahmet Ocak ;
Karaoglan, Ali ;
Ragusa, Maria Alessandra ;
Set, Erhan .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[3]   New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators [J].
Akdemir, Ahmet Ocak ;
Butt, Saad Ihsan ;
Nadeem, Muhammad ;
Ragusa, Maria Alessandra .
MATHEMATICS, 2021, 9 (02) :1-11
[4]   Fejer-Type Inequalities for Harmonically Convex Functions and Related Results [J].
Amer Latif, Muhammad .
SYMMETRY-BASEL, 2023, 15 (08)
[5]  
Aslan S., 2023, Electron. J. Appl. Math., V1, P38, DOI [10.61383/ejam.20231353, DOI 10.61383/EJAM.20231353]
[6]  
Butt S.I., 2020, Turk. J. Sci, V5, P140
[7]   Hermite-Hadamard Type Inequalities via Generalized Harmonic Exponential Convexity and Applications [J].
Butt, Saad Ihsan ;
Tariq, Muhammad ;
Aslam, Adnan ;
Ahmad, Hijaz ;
Nofal, Taher A. .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[8]  
Diaz R., 2007, Divulgaciones Matematicas, V15, P179, DOI DOI 10.48550/ARXIV.MATH/0405596
[9]   Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of h-convex functions [J].
Dragomir, Silvestru Sever .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) :2364-2380
[10]  
Farid Ghulam, 2017, Proyecciones (Antofagasta), V36, P753