Pattern dynamics of vegetation based on optimal control theory

被引:11
作者
Hou, Li-Feng [1 ,2 ]
Li, Li [3 ]
Chang, Lili [1 ]
Wang, Zhen [4 ,5 ]
Sun, Gui-Quan [1 ,2 ]
机构
[1] Shanxi Univ, Complex Syst Res Ctr, Taiyuan 030006, Shanxi, Peoples R China
[2] North Univ China, Sch Math, Taiyuan 030051, Shanxi, Peoples R China
[3] Shanxi Univ, Sch Comp & Informat Technol, Taiyuan 030006, Peoples R China
[4] Northwestern Polytech Univ, Sch Cybersecur, Xian 710072, Shaanxi, Peoples R China
[5] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal control; Sparse control; Vegetation pattern dynamics; Reaction diffusion equation; SPARSE OPTIMAL-CONTROL; BANDED VEGETATION; SELF-ORGANIZATION; KLAUSMEIER MODEL; DIRECTIONAL SPARSITY; CATASTROPHIC SHIFTS; DRYLAND ECOSYSTEMS; STABILITY ANALYSIS; DESERTIFICATION; RESILIENCE;
D O I
10.1007/s11071-024-10241-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Vegetation pattern dynamics is a pivotal research domain in ecology, which can reveal the impact of the non-uniform distribution of vegetation on ecosystem structure and function. However, effectively managing and safeguarding these vegetation patterns to prevent ecological degradation remains challenging. The application of optimal control theory, a potent mathematical tool in ecology, has garnered significant attention. This review explores the application of optimal control theory in vegetation pattern dynamics, elucidating methods for achieving vegetation pattern phase transitions through control measures. Special emphasis is placed on the importance of optimal control in studying phase transitions of arid vegetation patterns, as well as the applicability of different control strategies for vegetation pattern management. Additionally, we envisage potential development directions of optimal control theory in future vegetation pattern dynamics research and discuss possible challenges and opportunities.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 145 条
[1]  
Anita S, 2011, MODEL SIMUL SCI ENG, P1
[2]   An optimal control problem for a pest, predator, and plant system [J].
Apreutesei, N. C. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) :1391-1400
[3]   Memristive effects on an improved discrete Rulkov neuron model [J].
Bao, Han ;
Li, KeXin ;
Ma, Jun ;
Hua, ZhongYun ;
Xu, Quan ;
Bao, BoCheng .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2023, 66 (11) :3153-3163
[4]  
Barbu V., 2012, MATH METHODS OPTIMIZ, V310
[5]   Combatting global grassland degradation [J].
Bardgett, Richard D. ;
Bullock, James M. ;
Lavorel, Sandra ;
Manning, Peter ;
Schaffner, Urs ;
Ostle, Nicholas ;
Chomel, Mathilde ;
Durigan, Giselda ;
Fry, Ellen L. ;
Johnson, David ;
Lavallee, Jocelyn M. ;
Le Provost, Gaetane ;
Luo, Shan ;
Png, Kenny ;
Sankaran, Mahesh ;
Hou, Xiangyang ;
Zhou, Huakun ;
Ma, Li ;
Ren, Weibo ;
Li, Xiliang ;
Ding, Yong ;
Li, Yuanheng ;
Shi, Hongxiao .
NATURE REVIEWS EARTH & ENVIRONMENT, 2021, 2 (10) :720-735
[6]   Network neuroscience [J].
Bassett, Danielle S. ;
Sporns, Olaf .
NATURE NEUROSCIENCE, 2017, 20 (03) :353-364
[7]   The effect of climate change on the resilience of ecosystems with adaptive spatial pattern formation [J].
Bastiaansen, Robbin ;
Doelman, Arjen ;
Eppinga, Maarten B. ;
Rietkerk, Max .
ECOLOGY LETTERS, 2020, 23 (03) :414-429
[8]   Stable planar vegetation stripe patterns on sloped terrain in dryland ecosystems [J].
Bastiaansen, Robbin ;
Carter, Paul ;
Doelman, Arjen .
NONLINEARITY, 2019, 32 (08) :2759-2814
[9]   Multistability of model and real dryland ecosystems through spatial self-organization [J].
Bastiaansen, Robbin ;
Jaibi, Olfa ;
Deblauwe, Vincent ;
Eppinga, Maarten B. ;
Siteur, Koen ;
Siero, Eric ;
Mermoz, Phane ;
Bouvet, Alexandre ;
Doelman, Arjen ;
Rietkerk, Max .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (44) :11256-11261
[10]   Intelligent optimal control with dynamic neural networks [J].
Becerikli, Y ;
Konar, AF ;
Samad, T .
NEURAL NETWORKS, 2003, 16 (02) :251-259