Inverse design of colored daytime radiative coolers using deep neural networks

被引:12
作者
Keawmuang, Harit [1 ]
Badloe, Trevon [2 ]
Lee, Chihun [1 ]
Park, Junkyeong [1 ]
Rho, Junsuk [1 ,3 ,4 ,5 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mech Engn, Pohang 37673, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Grad Sch Artificial Intelligence, Pohang 37673, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 37673, South Korea
[4] Pohang Univ Sci & Technol POSTECH, Dept Elect Engn, Pohang 37673, South Korea
[5] POSCO POSTECH, RIST Convergence Res Ctr Flat Opt & Metaphoton, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
Nanophotonics; Radiative cooling; Deep learning; Inverse design; Multilayered structure;
D O I
10.1016/j.solmat.2024.112848
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Passive daytime radiative cooling is an eco-friendly and cost-efficient cooling strategy that is achieved by selectively reflecting the solar irradiance and emitting heat to cold background of the universe through the atmospheric window (AW) at infrared wavelengths. The daytime radiative coolers traditionally exhibit a grey or white color due to the requirement of high solar irradiance reflectance. Here, we present a colored daytime radiative cooler (CDRC) that has high reflectance in the NIR, high emissivity in the AW, and the capability to generate subtractive primary colors based on Fabry-Pe<acute accent>rot interference using metal-insulator-metal (MIM) structures. The structural parameters of the MIM multilayers are inversely designed using tandem neural networks to achieve cooling powers of 11.2-38.2 W/m2 with on-demand color generation. The proposed CDRCs have potential to be used for cooling thermal sensitive electronic and optoelectronic devices and aesthetic applications.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Passive Radiative Cooling of Silicon Solar Modules with Photonic Silica Microcylinders [J].
Akerboom, Evelijn ;
Polman, Albert ;
Veeken, Tom ;
Hecker, Christoph ;
Groep, Jorik van de .
ACS PHOTONICS, 2022, 9 (12) :3831-3840
[2]   Microstructured surfaces for colored and non-colored sky radiative cooling [J].
Blandre, Etienne ;
Yalcin, Refet Ali ;
Joulain, Karl ;
Drevillon, Jeremie .
OPTICS EXPRESS, 2020, 28 (20) :29703-29713
[3]   Self-Cooling Gallium-Based Transformative Electronics with a Radiative Cooler for Reliable Stiffness Tuning in Outdoor Use [J].
Byun, Sang-Hyuk ;
Yun, Joo Ho ;
Heo, Se-Yeon ;
Shi, Chuanqian ;
Lee, Gil Ju ;
Agno, Karen-Christian ;
Jang, Kyung-In ;
Xiao, Jianliang ;
Song, Young Min ;
Jeong, Jae-Woong .
ADVANCED SCIENCE, 2022, 9 (24)
[4]   Contribution of air conditioning adoption to future energy use under global warming [J].
Davis, Lucas W. ;
Gertler, Paul J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (19) :5962-5967
[5]   Photonics and thermodynamics concepts in radiative cooling [J].
Fan, Shanhui ;
Li, Wei .
NATURE PHOTONICS, 2022, 16 (03) :182-190
[6]   Machine Learning-Enabled Inverse Design of Radiative Cooling Film with On-Demand Transmissive Color [J].
Guan, Qiangshun ;
Raza, Aikifa ;
Mao, Samuel S. ;
Vega, Lourdes F. ;
Zhang, TieJun .
ACS PHOTONICS, 2023, 10 (03) :715-726
[7]   Radiative Cooling: Principles, Progress, and Potentials [J].
Hossain, Md. Muntasir ;
Gu, Min .
ADVANCED SCIENCE, 2016, 3 (07)
[8]   Ideal spectral emissivity for radiative cooling of earthbound objects [J].
Jeon, Suwan ;
Shin, Jonghwa .
SCIENTIFIC REPORTS, 2020, 10 (01)
[9]   Infrared-Reflective Transparent Hyperbolic Metamaterials for Use in Radiative Cooling Windows [J].
Jin, Yeonghoon ;
Jeong, Youngjae ;
Yu, Kyoungsik .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (01)
[10]   Photonic Multilayer Structure Induced High Near-Infrared (NIR) Blockage as Energy-Saving Window [J].
Kim, Jiwon ;
Baek, Sangwon ;
Park, Jae Yong ;
Kim, Kwang Ho ;
Lee, Jong-Lam .
SMALL, 2021, 17 (29)