Multi-modality artificial intelligence-based transthyretin amyloid cardiomyopathy detection in patients with severe aortic stenosis

被引:4
作者
Shiri, Isaac [1 ]
Balzer, Sebastian [1 ]
Baj, Giovanni [1 ,2 ]
Bernhard, Benedikt [1 ]
Hundertmark, Moritz [1 ]
Bakula, Adam [1 ]
Nakase, Masaaki [1 ]
Tomii, Daijiro [1 ]
Barbati, Giulia [2 ]
Dobner, Stephan [1 ]
Valenzuela, Waldo [3 ]
Rominger, Axel [4 ]
Caobelli, Federico [4 ]
Siontis, George C. M. [1 ]
Lanz, Jonas [1 ]
Pilgrim, Thomas [1 ]
Windecker, Stephan [1 ]
Stortecky, Stefan [1 ]
Grani, Christoph [1 ]
机构
[1] Univ Bern, Bern Univ Hosp, Inselspital, Dept Cardiol, Freiburgstr, CH-3010 Bern, Switzerland
[2] Univ Trieste, Dept Med Sci, Biostat Unit, Trieste, Italy
[3] Univ Bern, Univ Inst Diagnost & Intervent Neuroradiol, Bern Univ Hosp, Inselspital, Freiburgstr, CH-3010 Bern, Switzerland
[4] Univ Bern, Univ Hosp Bern, Dept Nucl Med, Inselspital, Bern, Switzerland
关键词
Transthyretin amyloid cardiomyopathy; Aortic stenosis; TAVI; Artificial intelligence; Radiomics; RISK;
D O I
10.1007/s00259-024-06922-4
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Transthyretin amyloid cardiomyopathy (ATTR-CM) is a frequent concomitant condition in patients with severe aortic stenosis (AS), yet it often remains undetected. This study aims to comprehensively evaluate artificial intelligence-based models developed based on preprocedural and routinely collected data to detect ATTR-CM in patients with severe AS planned for transcatheter aortic valve implantation (TAVI). Methods In this prospective, single-center study, consecutive patients with AS were screened with [Tc-99m]-3,3-diphosphono-1,2-propanodicarboxylic acid ([Tc-99m]-DPD) for the presence of ATTR-CM. Clinical, laboratory, electrocardiogram, echocardiography, invasive measurements, 4-dimensional cardiac CT (4D-CCT) strain data, and CT-radiomic features were used for machine learning modeling of ATTR-CM detection and for outcome prediction. Feature selection and classifier algorithms were applied in single- and multi-modality classification scenarios. We split the dataset into training (70%) and testing (30%) samples. Performance was assessed using various metrics across 100 random seeds. Results Out of 263 patients with severe AS (57% males, age 83 +/- 4.6years) enrolled, ATTR-CM was confirmed in 27 (10.3%). The lowest performances for detection of concomitant ATTR-CM were observed in invasive measurements and ECG data with area under the curve (AUC) < 0.68. Individual clinical, laboratory, interventional imaging, and CT-radiomics-based features showed moderate performances (AUC 0.70-0.76, sensitivity 0.79-0.82, specificity 0.63-0.72), echocardiography demonstrated good performance (AUC 0.79, sensitivity 0.80, specificity 0.78), and 4D-CT-strain showed the highest performance (AUC 0.85, sensitivity 0.90, specificity 0.74). The multi-modality model (AUC 0.84, sensitivity 0.87, specificity 0.76) did not outperform the model performance based on 4D-CT-strain only data (p-value > 0.05). The multi-modality model adequately discriminated low and high-risk individuals for all-cause mortality at a mean follow-up of 13 months. Conclusion Artificial intelligence-based models using collected pre-TAVI evaluation data can effectively detect ATTR-CM in patients with severe AS, offering an alternative diagnostic strategy to scintigraphy and myocardial biopsy.
引用
收藏
页码:485 / 500
页数:16
相关论文
共 46 条
[1]   Prevalence of ATTR-CA and high-risk features to guide testing in patients referred for TAVR [J].
Abadie, Bryan ;
Ali, Adel Hajj ;
Martyn, Trejeeve ;
Higgins, Andrew ;
Krishnaswamy, Amar ;
Reed, Grant ;
Puri, Rishi ;
Yun, James ;
Cremer, Paul ;
Hanna, Mazen ;
Tang, W. H. Wilson ;
Kapadia, Samir ;
Jaber, Wael .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (13) :3910-3916
[2]   Convolutional Neural Networks for Fully Automated Diagnosis of Cardiac Amyloidosis by Cardiac Magnetic Resonance Imaging [J].
Agibetov, Asan ;
Kammerlander, Andreas ;
Duca, Franz ;
Nitsche, Christian ;
Koschutnik, Matthias ;
Dona, Carolina ;
Dachs, Theresa-Marie ;
Rettl, Rene ;
Stria, Alessa ;
Schrutka, Lore ;
Binder, Christina ;
Kastner, Johannes ;
Agis, Hermine ;
Kain, Renate ;
Auer-Grumbach, Michaela ;
Samwald, Matthias ;
Hengstenberg, Christian ;
Dorffner, Georg ;
Mascherbauer, Julia ;
Bonderman, Diana .
JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (12)
[3]   Machine Learning Approaches in Diagnosis, Prognosis and Treatment Selection of Cardiac Amyloidosis [J].
Allegra, Alessandro ;
Mirabile, Giuseppe ;
Tonacci, Alessandro ;
Genovese, Sara ;
Pioggia, Giovanni ;
Gangemi, Sebastiano .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (06)
[4]   Current and Evolving Multimodality Cardiac Imaging in Managing Transthyretin Amyloid Cardiomyopathy [J].
Alwan, Louhai ;
Benz, Dominik C. ;
Cuddy, Sarah A. M. ;
Dobner, Stephan ;
Shiri, Isaac ;
Caobelli, Federico ;
Bernhard, Benedikt ;
Stampfli, Simon F. ;
Eberli, Franz ;
Reyes, Mauricio ;
Kwong, Raymond Y. ;
Falk, Rodney H. ;
Dorbala, Sharmila ;
Graeni, Christoph .
JACC-CARDIOVASCULAR IMAGING, 2024, 17 (02) :195-211
[5]   Cardiac scintigraphy and echocardiography assessment in the diagnosis of transthyretin cardiac amyloidosis [J].
Araujo, Maria del Carmen Mallon ;
Casas, Estephany Abou Jokh ;
Casas, Charigan Abou Jokh ;
Monzonis, Maria Amparo Martinez ;
Morell, alvaro Ruibal ;
Nunez, Virginia Pubul .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2024, 40 (02) :415-424
[6]   Routine 4D Cardiac CT to Identify Concomitant Transthyretin Amyloid Cardiomyopathy in Older Adults with Severe Aortic Stenosis [J].
Bernhard, Benedikt ;
Leib, Zoe ;
Dobner, Stephan ;
Demirel, Caglayan ;
Caobelli, Federico ;
Rominger, Axel ;
Schuetze, Jonathan ;
Grogg, Hanna ;
Alwan, Louhai ;
Spano, Giancarlo ;
Berto, Martina Boscolo ;
Lanz, Jonas ;
Pilgrim, Thomas ;
Windecker, Stephan ;
Stortecky, Stefan ;
Graeni, Christoph .
RADIOLOGY, 2023, 309 (03)
[7]   Prognostic Value of [99mTc]Tc-DPD Quantitative SPECT/CT in Patients with Suspected and Confirmed Amyloid Transthyretin-Related Cardiomyopathy and Preserved Left Ventricular Function [J].
Caobelli, Federico ;
Gozlugol, Nasir ;
Bakula, Adam ;
Rominger, Axel ;
Schepers, Robin ;
Stortecky, Stefan ;
Munsch, Lukas Hunziker ;
Dobner, Stephan ;
Grani, Christoph .
JOURNAL OF NUCLEAR MEDICINE, 2024, 65 (06) :944-951
[8]   Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement [J].
Castano, Adam ;
Narotsky, David L. ;
Hamid, Nadira ;
Khalique, Omar K. ;
Morgenstern, Rachelle ;
DeLuca, Albert ;
Rubin, Jonah ;
Chiuzan, Codruta ;
Nazif, Tamim ;
Vahl, Torsten ;
George, Isaac ;
Kodali, Susheel ;
Leon, Martin B. ;
Hahn, Rebecca ;
Bokhari, Sabahat ;
Maurer, Mathew S. .
EUROPEAN HEART JOURNAL, 2017, 38 (38) :2879-2887
[9]   TRIPOD plus AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods [J].
Collins, Gary S. ;
Moons, Karel G. M. ;
Dhiman, Paula ;
Riley, Richard ;
Beam, Andrew L. ;
Van Calster, Ben ;
Ghassemi, Marzyeh ;
Liu, Xiaoxuan ;
Reitsma, Johannes B. ;
van Smeden, Maarten ;
Boulesteix, Anne-Laure ;
Camaradou, Jennifer Catherine ;
Celi, Leo Anthony ;
Denaxas, Spiros ;
Denniston, Alastair K. ;
Glocker, Ben ;
Golub, Robert M. ;
Harvey, Hugh ;
Heinze, Georg ;
Hoffman, Michael M. ;
Kengne, Andre Pascal ;
Lam, Emily ;
Lee, Naomi ;
Loder, Elizabeth W. ;
Maier-Hein, Lena ;
Mateen, Bilal A. ;
McCradden, Melissa ;
Oakden-Rayner, Lauren ;
Ordish, Johan ;
Parnell, Richard ;
Rose, Sherri ;
Singh, Karandeep ;
Wynants, Laure ;
Logullo, Patricia .
BMJ-BRITISH MEDICAL JOURNAL, 2024, 385
[10]   Tc-99m pyrophosphate scintigraphy for cardiac amyloidosis: concordance between planar and SPECT/CT imaging [J].
Coskun, Nazim ;
Kartal, M. Oguz ;
Erdogan, A. Sinem ;
Tufekcioglu, Omac ;
Ozdemir, Elif .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2022, 38 (09) :2081-2088