SAPEVO-PC: Integrating Multi-Criteria Decision-Making and Machine Learning to Evaluate Navy Ships

被引:1
作者
Costa, Igor Pinheiro de Araujo [1 ,2 ]
Costa, Arthur Pinheiro de Araujo [3 ]
Moreira, Miguel angelo Lellis [1 ,2 ]
Castro Junior, Marcos Alexandre [4 ]
Pereira, Daniel Augusto de Moura [5 ]
Gomes, Carlos Francisco Simoes [2 ]
dos Santos, Marcos [2 ,3 ]
机构
[1] Naval Syst Anal Ctr CASNAV, Operat Res Dept, BR-20091000 Rio De Janeiro, Brazil
[2] Fluminense Fed Univ UFF, Prod Engn Dept, BR-24210346 Niteroi, Brazil
[3] Mil Inst Engn IME, Syst & Comp Dept, BR-22290270 Rio De Janeiro, Brazil
[4] State Univ Rio De Janeiro UERJ, Postgrad Dept Accounting Sci, BR-20950000 Rio De Janeiro, Brazil
[5] Fed Univ Campina Grande UFCG, Prod Engn Dept, BR-58428830 Campina Grande, Brazil
关键词
SAPEVO-PC; machine learning; marine science; operations research; multi-criteria; EXPLORATORY FACTOR-ANALYSIS; SELECTION; TOPSIS;
D O I
10.3390/jmse12081444
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The selection of a navy ship is essential to guarantee a country's sovereignty, deterrence capabilities, and national security, especially in the face of possible conflicts and diplomatic instability. This paper proposes the integration of concepts related to multi-criteria decision making (MCDM) methodology and machine learning, creating the Simple Aggregation of Preferences Expressed by Ordinal Vectors-Principal Components (SAPEVO-PC) method. The proposed method proposes an evolution of the SAPEVO family, allowing the inclusion of qualitative preferences, and adds concepts from Principal Component Analysis (PCA), aiming to simplify the decision-making process, maintaining precision and reliability. We carried out a case study analyzing 32 warships and ten quantitative criteria, demonstrating the practical application and effectiveness of the method. The generated rankings reflected both subjective perceptions and the quantitative performance data of each ship. This innovative integration of qualitative data with a quantitative machine learning algorithm ensures comprehensive and robust analyses, facilitating informed and strategic decisions. The results showed a high degree of consistency and reliability, with the top and bottom rankings remaining stable across different decision-makers' perspectives. This study highlights the potential of SAPEVO-PC to improve decision-making efficiency in complex, multi-criteria environments, contributing to the field of marine science.
引用
收藏
页数:35
相关论文
共 84 条
[61]  
Moreira Miguel Angelo Lellis, 2022, Procedia Computer Science, P133, DOI 10.1016/j.procs.2022.11.158
[62]  
Moreira Miguel Angelo Lellis, 2023, Innovations in Industrial Engineering II. Lecture Notes in Mechanical Engineering, P61, DOI 10.1007/978-3-031-09360-9_6
[63]   PROMETHEE-SAPEVO-M1 a Hybrid Approach Based on Ordinal and Cardinal Inputs: Multi-Criteria Evaluation of Helicopters to Support Brazilian Navy Operations [J].
Moreira, Miguel angelo Lellis ;
de Araujo Costa, Igor Pinheiro ;
Pereira, Maria Teresa ;
dos Santos, Marcos ;
Gomes, Carlos Francisco Simoes ;
Muradas, Fernando Martins .
ALGORITHMS, 2021, 14 (05)
[64]  
Pearson K.V.I.I., 1896, Philosophical Transactions of the Royal Society A, P253, DOI DOI 10.1098/RSTA.1896.0007
[65]   Evaluation of Smart Sensors for Subway Electric Motor Escalators through AHP-Gaussian Method [J].
Pereira, Ruan Carlos Alves ;
da Silva Jr, Orivalde Soares ;
Bandeira, Renata Albergaria de Mello ;
dos Santos, Marcos ;
Rocha Jr, Claudio de Souza ;
Castillo, Cristian dos Santos ;
Gomes, Carlos Francisco Simoes ;
Pereira, Daniel Augusto de Moura ;
Muradas, Fernando Martins .
SENSORS, 2023, 23 (08)
[66]   Selecting sustainable alternatives for cruise ships in Venice using multi-criteria decision analysis [J].
Pesce, Marco ;
Terzi, Stefano ;
Al-Jawasreh, Raid Issa Mahmoud ;
Bommarito, Claudia ;
Calgaro, Loris ;
Fogarin, Stefano ;
Russo, Elisabetta ;
Marcomini, Antonio ;
Linkov, Igor .
SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 642 :668-678
[67]  
Rees W., 2024, The AngloAmerican military relationship: Arms across the ocean
[68]   Fuzzy multi-criteria decision-making method for technology selection for emissions reduction from shipping under uncertainties [J].
Ren, Jingzheng ;
Lutzen, Marie .
TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2015, 40 :43-60
[69]  
ROY B, 1968, REV FR INFORM RECH O, V2, P57
[70]   Determining the Number of Factors to Retain in an Exploratory Factor Analysis Using Comparison Data of Known Factorial Structure [J].
Ruscio, John ;
Roche, Brendan .
PSYCHOLOGICAL ASSESSMENT, 2012, 24 (02) :282-292