Random noise attenuation in seismic data using an adaptive thresholding and the second-order variant time-reassigned synchrosqueezing transform

被引:5
作者
Anvari, Rasoul [1 ,2 ]
Kahoo, Amin Roshandel [1 ]
Monfared, Mehrdad Soleimani [1 ,3 ]
Mohammadi, Mokhtar [4 ]
机构
[1] Shahrood Univ Technol, Fac Min Petr & Geophys Engn, Shahrood, Iran
[2] Lebanese French Univ, Ctr Res & Strateg Studies, Erbil, Kurdistan Reg, Iraq
[3] Helmholtz Ctr Ocean Res Kiel, Geotherm & Informat Syst, Hannover, Germany
[4] Lebanese French Univ, Coll Engn & Comp Sci, Dept Informat Technol, Erbil, Kurdistan Reg, Iraq
关键词
Innovative noise attenuation methods; Time-reassigned synchrosqueezing transform; Random noise contamination; Adaptive thresholding; Seismic data analysis; INSTANTANEOUS FREQUENCY; SPECTRAL DECOMPOSITION; SIGNAL; SHRINKAGE; ALGORITHM;
D O I
10.1007/s11600-024-01355-x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Seismic data analysis often faces the challenge of random noise contamination from various sources. To overcome this, innovative noise attenuation methods utilizing seismic signal properties are needed. This study focuses on efficiently suppressing random noise in the domain of time and frequency by accurately estimating instantaneous frequency using the single-valued group delay characteristic of seismic signals. The time-reassigned synchrosqueezing transform (TSST) and its second-order variant (TSST2) offer high-resolution time-frequency representations (TFRs) for noise suppression. Expanding on these advancements, we propose an efficient noise suppression method that integrates the adaptive thresholding model into the TSST2 framework and employs sparse representation of the TFR through low-rank estimation. This method effectively attenuates noise while preserving essential signal information. The proposed approach operates trace by trace on recorded data, initially transforming it into a sparse subspace using TSST2. The adaptive thresholding model then decomposes the resulting TFR into sparse and semi-low-rank components, achieving a high-resolution and sparse TFR for efficient separation of noise and signal. After noise suppression, the seismic data can be fully reconstructed by inversely transforming the semi-low-rank component data into the time domain. This method addresses previous limitations in noise attenuation techniques and provides a practical solution for enhancing seismic data quality.
引用
收藏
页码:253 / 270
页数:18
相关论文
共 48 条
[1]   LATERAL PREDICTION FOR NOISE ATTENUATION BY T-X AND F-X TECHNIQUES [J].
ABMA, R ;
CLAERBOUT, J .
GEOPHYSICS, 1995, 60 (06) :1887-1896
[2]   Synchrosqueezing-based time-frequency analysis of multivariate data [J].
Ahrabian, Alireza ;
Looney, David ;
Stankovic, Ljubisa ;
Mandic, Danilo P. .
SIGNAL PROCESSING, 2015, 106 :331-341
[3]   Seismic resolution enhancement using scale transform in the time-frequency domain [J].
Alaei, Niloofar ;
Kahoo, Amin Roshandel ;
Rouhani, Abolghasem Kamkar ;
Soleimani, Mehrdad .
GEOPHYSICS, 2018, 83 (06) :V305-V314
[4]   Denoising of multidimensional seismic data in the physical domain by a new non-local self similarity method [J].
Anvari, Rasoul ;
Mohammadi, Mokhtar ;
Mafakheri, Javad ;
Kahoo, Amin Roshandel ;
Monfared, Mehrdad Soleimani ;
Rashidi, Shima ;
Mohammed, Adil Hussien .
EARTH SCIENCE INFORMATICS, 2023, 16 (01) :1041-1060
[5]   Random noise attenuation in seismic data using Hankel sparse low-rank approximation [J].
Anvari, Rasoul ;
Kahoo, Amin Roshandel ;
Monfared, Mehrdad Soleimani ;
Mohammadi, Mokhtar ;
Omer, Rebaz Mohammed Dler ;
Mohammed, Adil Hussien .
COMPUTERS & GEOSCIENCES, 2021, 153
[6]   Seismic Random Noise Attenuation Using Sparse Low-Rank Estimation of the Signal in the Time-Frequency Domain [J].
Anvari, Rasoul ;
Kahoo, Amin Roshandel ;
Mohammadi, Mokhtar ;
Khan, Nabeel Ali ;
Chen, Yangkang .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (05) :1612-1618
[7]   Enhancing 3-D Seismic Data Using the t-SVD and Optimal Shrinkage of Singular Value [J].
Anvari, Rasoul ;
Mohammadi, Mokhtar ;
Kahoo, Amin Roshandel .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (01) :382-388
[8]   Seismic Random Noise Attenuation Using Synchrosqueezed Wavelet Transform and Low-Rank Signal Matrix Approximation [J].
Anvari, Rasoul ;
Siahsar, Mohammad Amir Nazari ;
Gholtashi, Saman ;
Kahoo, Amin Roshandel ;
Mohammadi, Mokhtar .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (11) :6574-6581
[9]   Time-Frequency Reassignment and Synchrosqueezing [J].
Auger, Francois ;
Flandrin, Patrick ;
Lin, Yu-Ting ;
McLaughlin, Stephen ;
Meignen, Sylvain ;
Oberlin, Thomas ;
Wu, Hau-Tieng .
IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (06) :32-41
[10]   Identification of the viscoelastic response and nonlinear damping of a rubber plate in nonlinear vibration regime [J].
Balasubramanian, Prabakaran ;
Ferrari, Giovanni ;
Amabili, Marco .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 111 :376-398