Semantic attention guided low-light image enhancement with multi-scale perception

被引:1
作者
Hou, Yongqi [1 ]
Yang, Bo [1 ]
机构
[1] Inner Mongolia Univ, Sch Comp Sci, Hohhot 010021, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-light image enhancement; Semantic guidance; Attention mechanism; Deep learning; CONTRAST ENHANCEMENT; REPRESENTATION;
D O I
10.1016/j.jvcir.2024.104242
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Low-light environments often lead to complex degradation of captured images. However, most deep learning- based image enhancement methods for low-light conditions only learn a single-channel mapping relationship between the input image in low-light conditions and the desired image in normal light without considering semantic priors. This may cause the network to deviate from the original color of the region. In addition, deep network architectures are not suitable for low-light image recovery due to low pixel values. To address these issues, we propose a novel network called SAGNet. It consists of two branches:the main branch extracts global enhancement features at the level of the original image, and the other branch introduces semantic information through region-based feature learning and learns local enhancement features for semantic regions with multilevel perception to maintain color consistency. The extracted features are merged with the global enhancement features for semantic consistency and visualization. We also propose an unsupervised loss function to improve the network's adaptability to general scenes and reduce the effect of sparse datasets. Extensive experiments and ablation studies show that SAGNet maintains color accuracy better in all cases and keeps natural luminance consistency across the semantic range.
引用
收藏
页数:9
相关论文
共 32 条
[1]   A Joint Intrinsic-Extrinsic Prior Model for Retinex [J].
Cai, Bolun ;
Xu, Xiangmin ;
Guo, Kailing ;
Jia, Kui ;
Hu, Bin ;
Tao, Dacheng .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4020-4029
[2]   Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images [J].
Cai, Jianrui ;
Gu, Shuhang ;
Zhang, Lei .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) :2049-2062
[3]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[4]   Integrating Semantic Segmentation and Retinex Model for Low Light Image Enhancement [J].
Fan, Minhao ;
Wang, Wenjing ;
Yang, Wenhan ;
Liu, Jiaying .
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, :2317-2325
[5]   A fusion-based enhancing method for weakly illuminated images [J].
Fu, Xueyang ;
Zeng, Delu ;
Huang, Yue ;
Liao, Yinghao ;
Ding, Xinghao ;
Paisley, John .
SIGNAL PROCESSING, 2016, 129 :82-96
[6]   Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement [J].
Guo, Chunle ;
Li, Chongyi ;
Guo, Jichang ;
Loy, Chen Change ;
Hou, Junhui ;
Kwong, Sam ;
Cong, Runmin .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :1777-1786
[7]   LIME: Low-Light Image Enhancement via Illumination Map Estimation [J].
Guo, Xiaojie ;
Li, Yu ;
Ling, Haibin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (02) :982-993
[8]   Linearly quantile separated weighted dynamic histogram equalization for contrast enhancement [J].
Gupta, Bhupendra ;
Agarwal, Tarun Kumar .
COMPUTERS & ELECTRICAL ENGINEERING, 2017, 62 :360-374
[9]   Lightness-aware contrast enhancement for images with different illumination conditions [J].
Hao, Shijie ;
Guo, Yanrong ;
Wei, Zhongliang .
MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (03) :3817-3830
[10]   EnlightenGAN: Deep Light Enhancement Without Paired Supervision [J].
Jiang, Yifan ;
Gong, Xinyu ;
Liu, Ding ;
Cheng, Yu ;
Fang, Chen ;
Shen, Xiaohui ;
Yang, Jianchao ;
Zhou, Pan ;
Wang, Zhangyang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :2340-2349