Enhancing thermoelectric performance of AB 2 Sb 2-type Zintl phase through band shaping and lattice distortion

被引:6
作者
Xu, Qi [1 ]
Zhao, Kunpeng [1 ,2 ]
Huang, Haoran [1 ]
Wan, Shun [2 ]
Ren, Qingyong [3 ,4 ]
Hao, Xiaowen [3 ]
Wuliji, Hexige [1 ]
Lei, Jingdan [1 ]
Wei, Tian-Ran [1 ,2 ]
Shi, Xun [1 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Wuzhen Lab, Tongxiang 314500, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[4] Spallat Neutron Source Sci Ctr, Dongguan 523803, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Ceram, Superfine Microstruct, State Key Lab High Performance Ceram, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermoelectric; Zintl phase; Band shaping; Alloying; Lattice distortion; P-TYPE MG3SB2; THERMAL-CONDUCTIVITY; SCATTERING; EFFICIENCY; DISCOVERY; ELECTRON; ROUTE;
D O I
10.1016/j.actamat.2024.120040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
AB 2 Sb 2 -type Zintl phases, especially Mg 3 Sb 2 , have garnered widespread attention in virtue of their nontoxic constituent elements and outstanding thermoelectric performance in n -type materials. However, the p -type counterpart of AB 2 Sb 2 still struggles with a low figure of merit zT , primarily because of the limited valence band degeneracy, large band effective mass, and relatively high thermal conductivity. Here we simultaneously optimize the electrical and thermal transports of p -type AB 2 Sb 2 -based materials through shaping the band edge and distorting the crystal lattice. By alloying Zn at Mg2 site and Ca at Mg1 site, we successfully decorate the crystal lattice of Mg 3 Sb 2 in real space and thereby modify the band structure in reciprocal space. Zn alloying promotes the band degeneracy while Ca alloying reduce the single band effective mass, which largely promotes the transport of charge carriers. Moreover, the distorted crystal lattice effectively blocks the heat -carry phonons to reduce the lattice thermal conductivity lc L . A high zT of 0.81 is finally realized at 750 K in our Zn/Ca co -alloyed samples, which is three times larger than that of Mg 3 Sb 2 matrix. Our work opens new possibilities for the synthetic optimization of both electrical and thermal transports in Zintl phase and other thermoelectric systems.
引用
收藏
页数:9
相关论文
共 60 条
[1]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[2]   Enhanced thermoelectric performance of p-type Mg3Sb2 by lithium doping and its tunability in an anionic framework [J].
Chen, Chen ;
Li, Xiaofang ;
Li, Shan ;
Wang, Xinyu ;
Zhang, Zongwei ;
Sui, Jiehe ;
Cao, Feng ;
Liu, Xingjun ;
Zhang, Qian .
JOURNAL OF MATERIALS SCIENCE, 2018, 53 (23) :16001-16009
[3]   Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure [J].
Chen, Xiaoxi ;
Wu, Haijun ;
Cui, Juan ;
Xiao, Yu ;
Zhang, Yang ;
He, Jiaqing ;
Chen, Yue ;
Cao, Jian ;
Cai, Wei ;
Pennycook, Stephen J. ;
Liu, Zihang ;
Zhao, Li-Dong ;
Sui, Jiehe .
NANO ENERGY, 2018, 52 :246-255
[4]   Discovery of high-performance thermoelectric copper chalcogenide using modified diffusion-couple high-throughput synthesis and automated histogram analysis technique [J].
Deng, Tingting ;
Xing, Tong ;
Brod, Madison K. ;
Sheng, Ye ;
Qiu, Pengfei ;
Veremchuk, Igor ;
Song, Qingfeng ;
Wei, Tian-Ran ;
Yang, Jiong ;
Snyder, G. Jeffrey ;
Grin, Yuri ;
Chen, Lidong ;
Shi, Xun .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (09) :3041-3053
[5]   Adaptable sublattice stabilized high-entropy materials with superior thermoelectric performance [J].
Gao, Haotian ;
Zhao, Kunpeng ;
Wuliji, Hexige ;
Zhu, Min ;
Xu, Beibei ;
Lin, He ;
Fei, Liting ;
Zhang, Hongyao ;
Zhou, Zhengyang ;
Lei, Jingdan ;
Chen, Heyang ;
Wan, Shun ;
Wei, Tian-Ran ;
Shi, Xun .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (12) :6046-6057
[6]   Zintl phases as thermoelectric materials:: Tuned transport properties of the compounds CaxYb1-xZn2Sb2 [J].
Gascoin, F ;
Ottensmann, S ;
Stark, D ;
Haïle, SM ;
Snyder, GJ .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (11) :1860-1864
[7]   Enhanced Thermoelectric Figure of Merit of Zintl Phase YbCd2-xMnxSb2 by Chemical Substitution [J].
Guo, Kai ;
Cao, Qi-Gao ;
Feng, Xian-Juan ;
Tang, Mei-Bo ;
Chen, Hao-Hong ;
Guo, Xiangxin ;
Chen, Ling ;
Grin, Yuri ;
Zhao, Jing-Tai .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2011, (26) :4043-4048
[8]   All-SnTe-Based Thermoelectric Power Generation Enabled by Stepwise Optimization of n-Type SnTe [J].
Hong, Tao ;
Qin, Bingchao ;
Qin, Yongxin ;
Bai, Shulin ;
Wang, Ziyuan ;
Cao, Qian ;
Ge, Zhen-Hua ;
Zhang, Xiao ;
Gao, Xiang ;
Zhao, Li-Dong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (12) :8727-8736
[9]   Electronic Orbital Alignment and Hierarchical Phonon Scattering Enabling High Thermoelectric Performance p-Type Mg3Sb2 Zintl Compounds [J].
Hu, Jinsuo ;
Zhu, Jianbo ;
Guo, Fengkai ;
Qin, Haixu ;
Liu, Yijie ;
Zhang, Qian ;
Liu, Zihang ;
Cai, Wei ;
Sui, Jiehe .
RESEARCH, 2022, 2022
[10]   Thermoelectric performance improvement of p-type Mg3Sb2-based materials by Zn and Ag co-doping [J].
Huang, Lihong ;
Liu, Tong ;
Mo, Xiaobo ;
Yuan, Guocai ;
Wang, Runyu ;
Liu, Hang ;
Lei, Xiaobo ;
Zhang, Qinyong ;
Ren, Zhifeng .
MATERIALS TODAY PHYSICS, 2021, 21