On the convergence of Galerkin methods for auto-convolution Volterra integro-differential equations

被引:1
作者
Li, Yuping [1 ]
Liang, Hui [1 ]
Yuan, Huifang [1 ]
机构
[1] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Auto-convolution; Volterra integro-differential equations; Galerkin method; Convergence; INTEGRAL-EQUATIONS; COLLOCATION METHODS; APPROXIMATIONS; VERSION;
D O I
10.1007/s11075-024-01874-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Galerkin method is proposed for initial value problem of auto-convolution Volterra integro-differential equation (AVIDE). The solvability of the Galerkin method is discussed, and the uniform boundedness of the numerical solution is provided by defining a discrete weighted exponential norm. In particular, it is proved that the quadrature Galerkin method obtained from the Galerkin method by approximating the inner products by suitable numerical quadrature formulas, is equivalent to the continuous piecewise polynomial collocation method. For the Galerkin approximated solution in continuous piecewise polynomial space of degree m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{m}$$\end{document}, at first, the m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{m}$$\end{document} global convergence order is obtained. By defining a projection operator, the convergence is improved, and the optimal m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{m+1}$$\end{document} global convergence order is gained, as well as 2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{2m}$$\end{document} local convergence order at mesh points. Furthermore, all the above analysis for uniform mesh can be extended to typical quasi-uniform meshes. Some numerical experiments are given to illustrate the theoretical results.
引用
收藏
页码:183 / 205
页数:23
相关论文
共 17 条
[1]  
Brunner H., 2004, Collocation methods for volterra integral and related functional differential equations, P15, DOI [10.1017/CBO9780511543234, DOI 10.1017/CBO9780511543234]
[2]   Discontinuous Galerkin approximations for Volterra integral equations of the first kind [J].
Brunner, Hermann ;
Davies, Penny J. ;
Duncan, Dugald B. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (04) :856-881
[3]   NUMERICAL-SOLUTION OF A CERTAIN NON-LINEAR INTEGRO-DIFFERENTIAL EQUATION [J].
CHANG, SH ;
DAY, JT .
JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 26 (02) :162-168
[4]   Discontinuous Galerkin Methods for Auto-Convolution Volterra Integral Equations [J].
Li, Yuping ;
Liang, Hui ;
Yuan, Huifang .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2025, 17 (04) :1111-1132
[5]  
Li YP, 2023, J INTEGRAL EQU APPL, V35, P41, DOI [10.1216/jie.2023.35.41, 10.7495/j.issn.1009-3486.2023.04.007]
[6]   Discontinuous Galerkin approximations to second-kind Volterra integral equations with weakly singular kernel [J].
Liang, Hui .
APPLIED NUMERICAL MATHEMATICS, 2022, 179 :170-182
[7]   On Discontinuous and Continuous Approximations to Second-Kind Volterra Integral Equations [J].
Liang, Hui .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (01) :91-124
[8]  
Monin A. S., 1967, Statistical Hydromechanics
[9]  
Ortega J.M., 1972, Numerical Analysis
[10]  
TANG T, 1987, J COMPUT PHYS, V72, P486