Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets

被引:79
作者
Billot, Benjamin [1 ]
Magdamo, Colin [2 ]
Cheng, You [2 ]
Arnold, Steven E. [2 ]
Das, Sudeshna [2 ]
Iglesias, Juan Eugenio [1 ,3 ,4 ]
机构
[1] UCL, Ctr Med Image Comp, London WC1V 6LJ, England
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
[3] Harvard Med Sch, Massachusetts Gen Hosp, Martinos Ctr Biomed Imaging, Cambridge, MA 02129 USA
[4] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02138 USA
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
clinical brain MRI; segmentation; deep learning; domain-agnostic; VOLUME; CLASSIFICATION;
D O I
10.1073/pnas.2216399120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Every year, millions of brain MRI scans are acquired in hospitals, which is a figure considerably larger than the size of any research dataset. Therefore, the ability to analyze such scans could transform neuroimaging research. Yet, their potential remains untapped since no automated algorithm is robust enough to cope with the high variability in clinical acquisitions (MR contrasts, resolutions, orientations, artifacts, and subject populations). Here, we present SynthSeg+, an AI segmentation suite that enables robust analysis of heterogeneous clinical datasets. In addition to whole -brain segmentation, SynthSeg+ also performs cortical parcellation, intracranial volume estimation, and automated detection of faulty segmentations (mainly caused by scans of very low quality). We demonstrate SynthSeg+ in seven experiments, including an aging study on 14,000 scans, where it accurately replicates atrophy patterns observed on data of much higher quality. SynthSeg+ is publicly released as a ready-to-use tool to unlock the potential of quantitative morphometry.
引用
收藏
页数:10
相关论文
共 58 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions [J].
Akkus, Zeynettin ;
Galimzianova, Alfiia ;
Hoogi, Assaf ;
Rubin, Daniel L. ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :449-459
[3]   Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank [J].
Alfaro-Almagro, Fidel ;
Jenkinson, Mark ;
Bangerter, Neal K. ;
Andersson, Jesper L. R. ;
Griffanti, Ludovica ;
Douaud, Gwenaelle ;
Sotiropoulos, Stamatios N. ;
Jbabdi, Saad ;
Hernandez-Fernandez, Moises ;
Vallee, Emmanuel ;
Vidaurre, Diego ;
Webster, Matthew ;
McCarthy, Paul ;
Rorden, Christopher ;
Daducci, Alessandro ;
Alexander, Daniel C. ;
Zhang, Hui ;
Dragonu, Iulius ;
Matthews, Paul M. ;
Miller, Karla L. ;
Smith, Stephen M. .
NEUROIMAGE, 2018, 166 :400-424
[4]  
Alzheimer's Disease Neuroimaging Initiative, ADNI participant demographic
[5]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[6]   Brain charts for the human lifespan [J].
Bethlehem, R. A. I. ;
Seidlitz, J. ;
White, S. R. ;
Vogel, J. W. ;
Anderson, K. M. ;
Adamson, C. ;
Adler, S. ;
Alexopoulos, G. S. ;
Anagnostou, E. ;
Areces-Gonzalez, A. ;
Astle, D. E. ;
Auyeung, B. ;
Ayub, M. ;
Bae, J. ;
Ball, G. ;
Baron-Cohen, S. ;
Beare, R. ;
Bedford, S. A. ;
Benegal, V. ;
Beyer, F. ;
Blangero, J. ;
Blesa Cabez, M. ;
Boardman, J. P. ;
Borzage, M. ;
Bosch-Bayard, J. F. ;
Bourke, N. ;
Calhoun, V. D. ;
Chakravarty, M. M. ;
Chen, C. ;
Chertavian, C. ;
Chetelat, G. ;
Chong, Y. S. ;
Cole, J. H. ;
Corvin, A. ;
Costantino, M. ;
Courchesne, E. ;
Crivello, F. ;
Cropley, V. L. ;
Crosbie, J. ;
Crossley, N. ;
Delarue, M. ;
Delorme, R. ;
Desrivieres, S. ;
Devenyi, G. A. ;
Di Biase, M. A. ;
Dolan, R. ;
Donald, K. A. ;
Donohoe, G. ;
Dunlop, K. ;
Edwards, A. D. .
NATURE, 2022, 604 (7906) :525-+
[7]  
Billot B, 2020, Medical Image Computing and Computer Assisted Intervention-MICCAI 2020, P177, DOI DOI 10.1007/978-3-030-59728-3_18
[8]   Robust Segmentation of Brain MRI in the Wild with Hierarchical CNNs and No Retraining [J].
Billot, Benjamin ;
Magdamo, Colin ;
Arnold, Steven E. ;
Das, Sudeshna ;
Iglesias, Juan Eugenio .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 :538-548
[9]  
Billot B, 2023, Arxiv, DOI [arXiv:2107.09559, DOI 10.48550/ARXIV.2107.09559]
[10]  
Billot B, 2020, PR MACH LEARN RES, V121, P75