Phase transformation and powder densification behavior of the polyamide-12 during powder bed fusion process

被引:0
作者
Xu, Zhongfeng [1 ]
Freire, Lionel [1 ]
Billon, Noelle [1 ]
Yancheng, Zhang [1 ]
Bouvard, Jean-Luc [1 ]
机构
[1] PSL Univ, Ctr Mat forming CEMEF, Mines Paris, UMR CNRS, F-06904 Sophia Antipolis, France
关键词
Laser powder bed fusion; Crystallization kinetics; Densification kinetics; Numerical modeling; Polyamide-12; HEAT-TRANSFER; CRYSTALLIZATION KINETICS; MECHANICAL-PROPERTIES; POLYMER POWDER; LASER; SIMULATION; MODEL; PEEK; PA12;
D O I
10.1016/j.optlastec.2024.111288
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The phase transformation and densification behaviors are two critical research topics in the semi -crystalline polymer Laser Powder Bed Fusion (L-PBF) process. This study first introduces a thermal model incorporating crystallization kinetics to study the temperature evolution and phase transformation behavior during the L-PBF of polyamide-12 (PA12). The model highlights the delayed solidification behavior represented by the overall degree of crystallization compared with the temperature evolution during the cooling stage. A thermohydrodynamic model is then developed based on the thermal model to predict densification behavior and investigate the contraction under various processing conditions, incorporating powder densification kinetics. Numerical studies reveal that the contraction of the melt pool lags behind the movement of the laser beam significantly because the densification is not a transient but a continuing process accompanied by the fusion phase transformation. The model is validated by comparing the melt pool contraction obtained by experimental measurement and numerical simulation on single-track sintering. The reasonable thermal interaction during multiple -track simulations is proven to improve the final density noticeably. Finally, a two -laser scanning strategy is proposed to enhance the density of polymer L-PBF components.
引用
收藏
页数:13
相关论文
共 65 条
[1]   First, do not degrade-Dual Beam Laser Sintering of polymers [J].
Antonczak, Arkadiusz J. ;
Wieczorek, Mateusz ;
Dzienny, Paulina ;
Kryszak, Bartlomiej ;
Krokos, Anna ;
Gruber, Piotr ;
Olejarczyk, Michal ;
Gazinska, Malgorzata .
ADDITIVE MANUFACTURING, 2022, 53
[2]   Effect of particle size distribution on the packing of powder beds: A critical discussion relevant to additive manufacturing [J].
Averardi, Alessandro ;
Cola, Corrado ;
Zeltmann, Steven Eric ;
Gupta, Nikhil .
MATERIALS TODAY COMMUNICATIONS, 2020, 24
[3]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[4]  
AVRAMI M, 1940, J CHEM PHYS, V8, P212, DOI [DOI 10.1063/1.1750631, 10.1063/1.1750631]
[5]   Mesoscale modelling of polymer powder densification due to thermal sintering [J].
Bahloul, Amine ;
Doghri, Issam ;
Adam, Laurent .
APPLIED MATHEMATICAL MODELLING, 2023, 114 :408-422
[6]   The role of viscoelasticity in polymer sintering [J].
Bellehumeur, CT ;
Kontopoulou, M ;
Vlachopoulos, J .
RHEOLOGICA ACTA, 1998, 37 (03) :270-278
[7]   Shrinkage behaviour of semi-crystalline polymers in laser sintering: PEKK and PA12 [J].
Benedetti, L. ;
Brule, B. ;
Decreamer, N. ;
Evans, K. E. ;
Ghita, O. .
MATERIALS & DESIGN, 2019, 181
[8]   Processability of PEEK, a new polymer for High Temperature Laser Sintering (HT-LS) [J].
Berretta, S. ;
Evans, K. E. ;
Ghita, O. .
EUROPEAN POLYMER JOURNAL, 2015, 68 :243-266
[9]   Viscoelastic Properties of Polypropylene during Crystallization and Melting: Experimental and Phenomenological Modeling [J].
Billon, Noelle ;
Castellani, Romain ;
Bouvard, Jean-Luc ;
Rival, Guilhem .
POLYMERS, 2023, 15 (18)
[10]   Metal additive manufacturing in aerospace: A review [J].
Blakey-Milner, Byron ;
Gradl, Paul ;
Snedden, Glen ;
Brooks, Michael ;
Pitot, Jean ;
Lopez, Elena ;
Leary, Martin ;
Berto, Filippo ;
du Plessis, Anton .
MATERIALS & DESIGN, 2021, 209