Catalytic mechanisms of methylcyclohexane cracking and light olefins production over zeolites

被引:4
作者
Gao, Yuyue [1 ]
Liao, Linxian [1 ]
Zhu, Quan [1 ,2 ]
Ren, Haisheng [1 ,2 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Engn Res Ctr Combust & Cooling Aerosp Power, Minist Educ, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Cracking; Catalytic mechanism; Hydrocarbon fuel; Zeolites; Light olefins; REACTIVE FORCE-FIELD; CRYSTAL-STRUCTURE; CLUSTER-MODELS; HEAT-TRANSFER; REAXFF; ZSM-5; HYDROCARBONS; SILICALITE-1; SIMULATION; CONVERSION;
D O I
10.1016/j.jcat.2024.115496
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, the catalytic mechanisms of methylcyclohexane (MCH) cracking and light olefins production were systematically investigated over three zeolites catalysts of Si-ZSM-5, hydrated ZSM-5 and HZSM-5. HZSM-5 exhibited the highest activity in terms of MCH conversion and selectivity towards light olefins. The mechanisms of MCH activation over HZSM-5 show that protolytic ring-opening is more energetically favorable when compared to protolytic dehydrogenation and thermal cracking. Four distinct pathways can result in the production of light olefins. But the pathway for the productions of propylene and butane is energetically favorable. Both protolytic C-C bond cleavage and the regeneration of the Br & oslash;nsted acid site significantly influence production of light olefins. The rate-limiting steps for protolytic ring-opening and the production of light olefins are the initial protonation of C-C bonds. We hope this work can provide potential significance in understanding the hydrocarbon fuels cracking and aiding in identifying target products.
引用
收藏
页数:9
相关论文
共 59 条
[1]   Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques [J].
Aktulga, H. M. ;
Fogarty, J. C. ;
Pandit, S. A. ;
Grama, A. Y. .
PARALLEL COMPUTING, 2012, 38 (4-5) :245-259
[2]   One-step conversion of crude oil to light olefins using a multi-zone reactor [J].
Alabdullah, Mohammed ;
Rodriguez-Gomez, Alberto ;
Shoinkhorova, Tuiana ;
Dikhtiarenko, Alla ;
Chowdhury, Abhishek Dutta ;
Hita, Idoia ;
Kulkarni, Shekhar R. ;
Vittenet, Jullian ;
Sarathy, S. Mani ;
Castano, Pedro ;
Bendjeriou-Sedjerari, Anissa ;
Abou-Hamad, Edy ;
Zhang, Wen ;
Ali, Ola S. ;
Morales-Osorio, Isidoro ;
Xu, Wei ;
Gascon, Jorge .
NATURE CATALYSIS, 2021, 4 (03) :233-241
[3]   Silicalite-1 As Efficient Catalyst for Production of Propene from 1-Butene [J].
Arudra, Palani ;
Bhuiyan, Tazul Islam ;
Akhtar, Muhammad Naseem ;
Aitani, Abdullah M. ;
Al-Khattaf, Sulaiman S. ;
Hattori, Hideshi .
ACS CATALYSIS, 2014, 4 (11) :4205-4214
[4]   Molecular Dynamics Simulations of Methanol to Olefin Reactions in HZSM-5 Zeolite Using a ReaxFF Force Field [J].
Bai, Chen ;
Liu, Lianchi ;
Sun, Huai .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (12) :7029-7039
[5]   Comparison of thermal and catalytic cracking of 1-heptene from ReaxFF reactive molecular dynamics simulations [J].
Castro-Marcano, Fidel ;
van Duin, Adri C. T. .
COMBUSTION AND FLAME, 2013, 160 (04) :766-775
[6]   Numerical investigation of flow distribution and heat transfer of hydrocarbon fuel in regenerative cooling panel [J].
Chen, Yu ;
Wang, Yu ;
Bao, Zewei ;
Zhang, Qiyi ;
Li, Xiang-Yuan .
APPLIED THERMAL ENGINEERING, 2016, 98 :628-635
[7]   Molecular Simulation of the Catalytic Cracking of Hexadecane on ZSM-5 Catalysts Based on Reactive Force Field (ReaxFF) [J].
Chen, Zhuojun ;
Zhao, Peng ;
Zhao, Ling ;
Sun, Weizhen .
ENERGY & FUELS, 2017, 31 (10) :10515-10524
[8]   LOCATION OF CATIONS IN SYNTHETIC ZEOLITES X AND Y .4. EXCHANGE LIMITING FACTORS FOR CA2+ IN ZEOLITE Y [J].
COSTENOBLE, ML ;
MORTIER, WJ ;
UYTTERHOEVEN, JB .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1976, 72 :1877-1883
[9]  
Dassault Systemes BIOVIA, 2016, DS Visualizer
[10]   Role of pore structure in the deactivation of zeolites (HZSM-5, Hβ and HY) by coke in the pyrolysis of polyethylene in a conical spouted bed reactor [J].
Elordi, G. ;
Olazar, M. ;
Lopez, G. ;
Castano, P. ;
Bilbao, J. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 102 (1-2) :224-231