CellViT: Vision Transformers for precise cell segmentation and classification

被引:24
作者
Hoerst, Fabian [1 ,2 ,15 ]
Rempe, Moritz [1 ,2 ]
Heine, Lukas [1 ,2 ]
Seibold, Constantin [1 ,3 ]
Keyl, Julius [1 ,4 ]
Baldini, Giulia [1 ,5 ]
Ugurel, Selma [6 ,7 ]
Siveke, Jens [8 ,9 ,10 ,11 ]
Gruenwald, Barbara [12 ,13 ]
Egger, Jan [1 ,2 ]
Kleesiek, Jens [1 ,2 ,7 ,14 ]
机构
[1] Univ Hosp Essen AoR, Inst AI Med IKIM, D-45131 Essen, Germany
[2] Univ Hosp Essen AoR, Canc Res Ctr Cologne Essen CCCE, West German Canc Ctr Essen, D-45147 Essen, Germany
[3] Univ Hosp Essen AoR, Clin Nucl Med, D-45147 Essen, Germany
[4] Univ Hosp Essen AoR, Inst Pathol, D-45147 Essen, Germany
[5] Univ Hosp Essen AoR, Inst Intervent & Diagnost Radiol & Neuroradiol, D-45147 Essen, Germany
[6] Univ Hosp Essen AoR, Dept Dermatol, D-45147 Essen, Germany
[7] German Canc Consortium DKTK, Partner Site Essen, D-69120 Heidelberg, Germany
[8] German Canc Res Ctr, partnership German Canc Res Ctr DKFZ, Partner Site Essen, D-45147 Essen, Germany
[9] Univ Hosp Essen AoR, Univ Hosp Essen, West German Canc Ctr, Partner Site Essen, D-45147 Essen, Germany
[10] Univ Hosp Essen AoR, Univ Duisburg Essen, Bridge Inst Expt Tumor Therapy BIT, D-45147 Essen, Germany
[11] Univ Duisburg Essen, Univ Hosp Essen AoR, West German Canc Ctr Essen, Div Solid Tumor Translat Oncol DKTK, D-45147 Essen, Germany
[12] Univ Hosp Essen AoR, West German Canc Ctr, Dept Urol, D-45147 Essen, Germany
[13] Princess Margaret Canc Ctr, Toronto, ON M5G 2M9, Canada
[14] TU Dortmund Univ, Dept Phys, D-44227 Dortmund, Germany
[15] Insitute Artificial Intelligence Med, Girardetstr 2, D-45131 Essen, Germany
关键词
Cell segmentation; Digital pathology; Deep learning; Vision transformer; NUCLEI SEGMENTATION; IMAGE SEGMENTATION; NET; NETWORK;
D O I
10.1016/j.media.2024.103143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nuclei detection and segmentation in hematoxylin and eosin -stained (H&E) tissue images are important clinical tasks and crucial for a wide range of applications. However, it is a challenging task due to nuclei variances in staining and size, overlapping boundaries, and nuclei clustering. While convolutional neural networks have been extensively used for this task, we explore the potential of Transformer -based networks in combination with large scale pre -training in this domain. Therefore, we introduce a new method for automated instance segmentation of cell nuclei in digitized tissue samples using a deep learning architecture based on Vision Transformer called CellViT. CellViT is trained and evaluated on the PanNuke dataset, which is one of the most challenging nuclei instance segmentation datasets, consisting of nearly 200,000 annotated nuclei into 5 clinically important classes in 19 tissue types. We demonstrate the superiority of large-scale in -domain and out -of -domain pre -trained Vision Transformers by leveraging the recently published Segment Anything Model and a ViT-encoder pre -trained on 104 million histological image patches - achieving state-of-the-art nuclei detection and instance segmentation performance on the PanNuke dataset with a mean panoptic quality of 0.50 and an F 1 -detection score of 0.83. The code is publicly available at https://github.com/TIO-IKIM/CellViT.
引用
收藏
页数:16
相关论文
共 74 条
  • [11] Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning
    Chen, Richard J.
    Chen, Chengkuan
    Li, Yicong
    Chen, Tiffany Y.
    Trister, Andrew D.
    Krishnan, Rahul G.
    Mahmood, Faisal
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16123 - 16134
  • [12] CPP-Net: Context-Aware Polygon Proposal Network for Nucleus Segmentation
    Chen, Shengcong
    Ding, Changxing
    Liu, Minfeng
    Cheng, Jun
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 980 - 994
  • [13] Chen T, 2020, PR MACH LEARN RES, V119
  • [14] Exploring Simple Siamese Representation Learning
    Chen, Xinlei
    He, Kaiming
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15745 - 15753
  • [15] Segmentation of Clustered Nuclei With Shape Markers and Marking Function
    Cheng, Jierong
    Rajapakse, Jagath C.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (03) : 741 - 748
  • [16] Corredor G, 2017, J MED IMAGING, V4, DOI 10.1117/1.JMI.4.2.021105
  • [17] Valuing vicinity: Memory attention framework for context-based semantic segmentation in histopathology
    Ester, Oliver
    Hoerst, Fabian
    Seibold, Constantin
    Keyl, Julius
    Ting, Saskia
    Vasileiadis, Nikolaos
    Schmitz, Jessica
    Ivanyi, Philipp
    Gruenwald, Viktor
    Braesen, Jan Hinrich
    Egger, Jan
    Kleesiek, Jens
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 107
  • [18] A guide to deep learning in healthcare
    Esteva, Andre
    Robicquet, Alexandre
    Ramsundar, Bharath
    Kuleshov, Volodymyr
    DePristo, Mark
    Chou, Katherine
    Cui, Claire
    Corrado, Greg
    Thrun, Sebastian
    Dean, Jeff
    [J]. NATURE MEDICINE, 2019, 25 (01) : 24 - 29
  • [19] Gamper J, 2020, Arxiv, DOI arXiv:2003.10778
  • [20] Fast R-CNN
    Girshick, Ross
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1440 - 1448